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Introduction

The formulation of one or another incarnation of Brown representability theorem
may be technical, but the idea behind all of them is simple and elegant: We
want to be able to construct right or left adjoints for triangulated functors
preserving coproducts, respectively products; because the categories we work
with do not satisfy the hypothesis of Freyd’s Adjoint Functor Theorem we need
a replacement for it in the new setting. This is Brown representability.

The problem of the existence of the adjoint functors and the one of repre-
sentability of a given functor are strongly related (to fix the settings, suppose
that we work with preadditive categories): In one direction, a functor F : C → D
has a left adjoint if and only if the functor D(D,F (−)) : C → Ab is representable
for all D ∈ D (here and overall Ab denotes the category of abelian groups). Con-
versely a functor F : C → Ab has a left adjoint if and only if it is representable
(actually it is represented by the left adjoint evaluated at Z, see [22, p. 81-82]).

The name Brown representability comes from Edgar H. Brown which proved
in [14] that the homotopy category of spectra satisfies this property. Afterwards
a general version at the level of triangulated categories is due to Amnon Neeman
in his influential book on this subject [60]. This version, which is recalled in
Preliminaries, is the one we work with. In the same book [60], it is shown that so
called well-generated triangulated categories satisfy Brown representability. The
class of well-generated triangulated categories is quite large, being closed under
localization. Therefore since the derived category of modules over an arbitrary
ring is well–generated (even compactly generated), the same should be true for
the derived category of a Grothendieck abelian category. Despite the fact that
compactly generated categories satisfies the dual of Brown representability too,
this is not more automatically true for a localization. Neeman considers that the
main problem which remained open in his book is to establish which categories
satisfy the dual of the Brown representability. A strong impetus for the study
of Brown representability was provided by the fact that Neeman applied it in
algebraic geometry, for giving in [59] a conceptual proof for Grothendieck duality
based on the existence of adjoint functors.

The present work records some progresses in the study of Brown repre-
sentability which were obtained along almost ten years. The results here were
first published in author’s papers [9], [49], [50], [51], [52], [53], [54] and [56]. The
papers [9] and [56] are joint works with Simion Breaz, respectively with Jan
Šťov́ıček. It is a pleasure to thank them both for kindly agreeing with the use of
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these papers in this thesis. It should also be noted that putting together results
published in various places and times these results can not be simply pasted
one after other. Besides notational compatibility, the stuff was arranged in the
logical order which does not always coincide with the chronological order. In
the beginning of each chapter it is indicated the papers where were published
results contained in that chapter. When some important changes were operated,
this fact is also briefly explained.

In the first Chapter are defined main notions used overall in this work, and
are collected some preliminary results. More details can be found as follows: for
modules over rings with several objects in [39] and [27], for triangulated cate-
gories in [60] and [44], for general and abelian categories in [67], for homotopy
and derived category in [35], [36] or [79].

Chapter 2, titled Abelianization deals with the category mod(T ) of finitely
presented contravariant functors from a triangulated category T to Ab. It is
given a reformulation of Brown representability at the level of mod(T ). This
reformulation is used in order to give a new, more conceptual proof for a the-
orem due to Heller: A homological product preserving functor F : T → Ab is
representable if and only if it has a solution object.

Each of the next two chapters contains a new method for proving Brown
representability. In the Chapter 3 is introduced a key property of our approach,
namely Deconstructibility in triangulated categories. In analogy with the case
of abelian categories, a triangulated category T is deconstructible if there is a
set of objects S with the property that any object X ∈ T can be obtained, up
to isomorphism, as the homotopy colimit of a tower consisting of maps whose
mapping cones are direct summands of arbitrary direct sums of objects in S.
Further it is shown that deconstructible triangulated categories satisfies Brown
representability. A main advantage of this approach is that all results can be
immediately dualized, therefore we obtain a criterion for the dual of Brown
representability too. As we expect, well–generated triangulated categories are
deconstructible.

In Chapter 4 are introduced Quasi-locally presentable categories. Roughly
speaking they are big unions of locally presentable categories in the sense of [1]
and their definition is an axiomatization of some properties of the abelianization
of a well–generated triangulated category. The intention is to change a little
the perspective that the abelianization is to big, in the sense that it is not
well (co)powered (see [60, Appendix C]), hence not manageable (see also [60,
Remark 5.3.10] and the Introduction of Krause’s work [44]). More exactly,
one important result about the existence of adjoints depends on the categories
being well powered, namely the special Freyd’s adjoint functor theorem: if C
is a complete, well powered category having a cogenerator, then every functor
F : C → D has a left adjoint if and only if it preserves limits, see [22, p.
89]. We argue that even if the abelianization of a well generated triangulated
category is not well (co)powered, it has enough structure allowing us to apply
the general Freyd’s adjoint functor theorem: if C is a complete category, then
every functor F : C → D has a left adjoint if and only if it preserves limits and
satisfies the solution set condition (that is for every D ∈ D there is a set maps
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fi : D → F (Ci), i ∈ I in D, where Ci ∈ C, such that every map f : D → F (C),
with C ∈ C, factors through as f = F (k)fi for some k : Ci → C in C; see [1,
0.7]).

Chapter 5 deals with Homotopy category of complexes. It is shown that ifA is
a sufficiently nice additive category, then K(A) satisfies Brown representability
if and only if there is a fixed object X ∈ A such that every object in A is direct
summand of arbitrary direct sums of X. Again the result is dualizable. In
particular, ifR is a ring, then K(Mod(R)) satisfies Brown repesentability exactly
if R is pure semisimple. Some examples of triangulated coproduct preserving
functors without right adjoint are also provided.

In the Chapter 6, titled Brown representability for the dual it is applied
the deconstructibility criterion for showing that the opposite of the following
categories satisfies Brown representability: the derived category over a wide class
of abelian categories A, including the category of quasi-coherent sheaves over a
finite dimensional projective space, the homotopy category of projective modules
over a ring with several objects R and the homotopy category of projective
representations by R-modules of a quiver. Therefore in some particular cases we
found a solution of the Neeman unsolved problem about Brown representability
for the dual. It is also worthy to note that the homotopy category of projective
modules K(Proj(R)) plays a central role in [62], where it is also proved that it is
generally ℵ1-compactly generated but not (ℵ0-)compactly generated. Until [52]
where the results appear for the first time, there was known no other concrete
example of a triangulated category which is not compactly generated and whose
dual satisfies Brown representability.

The Appendix contains some problems which will be the subject of a further
research. To make the reading easier, an Index is included at the end of this
work.

All categories we work with are preadditive and all functors are additive.
Generalities about categories which are not defined in this work can be found
in monographs as [48] or [67]. I want also to mention that in the body of the
work some definitions are numbered other are not. The difference between them
is the following: Definitions of those notions which are used in more than one
chapter are numbered. For the rest of the notions, the definition is incorporated
in the text in order to increase its fluency.
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Chapter 1

Preliminaries

This is an introductory chapter, where we collect some well–known results which
we need further. Proofs are only included when we consider they are relevant
for further developments.

1.1 Modules over preadditive categories

Consider a preadditive category T , that is a category whose hom–sets are en-
dowed with a structure of abelian groups (with respect to an operation denoted
with +) such that the composition is bilinear. We write T (X,X ′) for the abelian
group of morphisms between X and X ′ in T . Note that a preadditive category
with exactly one object is nothing else than an associative ring with one.

Definition 1.1.1. By a right module over T (for shortly T -module) we under-
stand a contravariant functor T → Ab. In this work modules will always be
at right, so for dealing with a left T -module we have to consider a right T o-
module, that is a functor T → Ab. The class of all T -modules forms an abelian
AB5 category, the morphisms being natural transformations, category which is
denoted here by Mod(T ).

Note that the limits and colimits in Mod(T ) are computed point-wise. Usu-
ally, this category has no small Hom-sets (a category has small hom-sets if it
lives in the universe we work in, therefore usually Mod(T ) lives in a higher
universe that T ), unless T is essentially small (i.e. it has a small skeleton).
Skeletally small preadditive categories are also called rings with several objects.
Note that categories we work with have small hom-sets, even if this is not clear
from the beginning. Therefore we will not work with Mod(T ) for those cat-
egories T which are not skeletally small. Instead of it we consider the full
subcategory mod(T ) of Mod(T ), consisting of those T -modules M which are
finitely presentable, that is, there is an exact sequence

T (−, X)→ T (−, Y )→ F → 0,

9



10 CHAPTER 1. PRELIMINARIES

with X,Y ∈ T . This last category has small Hom-sets, provided that T does,
as we can see by Yoneda lemma. The Yoneda embedding

T → Mod(T ), X 7→ T (−, X)

restricts to a well defined fully faithful functor

H = HT : T → mod(T ), H(X) = T (−, X),

called also Yoneda functor, or Yoneda embedding (we will omit the index T
if no confusion is possible). We denote HomT (X,Y ) the class of all natural
transformations between two T -modules.

Define also mop(T ) = (mod(T )o)
o
, and denote

H ′ = H ′T : T → mop(T ), H ′(x) = T (x,−).

For the sake of clarity we will denote by T (X,−) the respective (projective) ob-
ject of (mod(T ))o and by H ′(X) the same (injective) object viewed in mop(T ).
It is well known, that mod(T ) (respectively mop(T )) is an additive finitely
cocomplete (complete) category with enough projectives (injectives), and any
functor F : T → A, into an additive finitely cocomplete (complete) category,
extends uniquely, up to a natural isomorphism, to a cokernel (kernel) preserving
functor

F∗ : mod(T )→ A (F ∗ : mop(T )→ A),

such that F ∼= F∗ ◦ H (F ∼= F ∗ ◦ H ′). Often the category A is chosen to
be abelian. Obviously, H commutes with products, and H ′ commutes with
coproducts which exists in T . If, in addition, T has coproducts (respectively,
products), then mod(T ) (mop(T )) has also coproducts (products), and the
embedding H (H ′) commutes with coproducts (products). If this is the case,
the a functor F : T → A preserves coproducts (products) if and only if the
induced functor F∗ (F ∗) has the same property. Together with the observation
that F∗ (F ∗) is always cokernel (kernel) preserving, this is further equivalent to
the fact that F∗ (F ∗) preserves colimits (limits).

Definition 1.1.2. A morphism X → Y in has a weak (co)kernel if there is a
morphism X ′ → Y (Y → Y ′) such that the sequence of Ab–valued functors

T (−, X ′)→ T (−, X)→ T (−, Y ),

( respectively T (Y ′,−)→ T (Y,−)→ T (−, X) )

is exact.

Recall that mod(T ) (mop(T )) is abelian, provided that T has weak-kernels
(weak-cokernels).

Definition 1.1.3. Let F : T → Ab be a functor. The comma category of
objects over F , denoted by T /F , has as objects pairs of the form (X,x) where
X ∈ T and x ∈ F (X), and a map between (X,x) and (Y, y) in T /F is a map
f : X → Y in T such that F (f)(x) = y.
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Recall that the solution set condition for functors with values in the category
of abelian groups F : T → Ab can be stated as follows: There is a set S of objects
in T , such that for any K ∈ T and any y ∈ F (K) there are S ∈ S, x ∈ F (S)
and f : S → K satisfying F (f)(x) = y (see [46, Chapter V, §6, Theorem 3]).
We can reformulate this by saying that the category

S/F = {(S, x) | S ∈ S, x ∈ F (S)}

is weakly initial in T /F , that is for every (K, y) ∈ T /F there exists a map
(S, x)→ (K, y) for some (S, x) ∈ S/F . Via Yoneda lemma, every object (S, x) ∈
S/F corresponds to a natural transformation T (S,−)→ F . In these terms, the
existence of a solution set is further equivalent to the fact that there are objects
Si ∈ T indexed over a set I and a functorial epimorphism⊕

i∈I
T (Si,−)→ F → 0.

Definition 1.1.4. We say that F : T → Ab has a solution object provided that
there is an object S ∈ T and a functorial epimorphism

T (S,−)→ F → 0,

or equivalently, the category T /F has a weakly initial object.

Note that if there are arbitrary products in T , and the functor F preserves
them, then the existence of a solution set is clearly equivalent to that of a
solution object. Obviously if F ∼= T (S,−) is representable, then F has a solution
object.

Let A be a additive category and C ⊆ A be a subcategory. Let F : A → Ab
be a contravariant functor. The we can consider the comma category of objects
over F |C , where F |C denotes the restriction of F at C, that is

C/F = {(X,x) | X ∈ C, x ∈ F (C)},

with the morphisms

C/F ((X1, x1), (X2, x2)) = {α ∈ C(X1, X2) | F (α)(x2) = x1}.

In particular, for any object A ∈ A, let denote

C/A = C/A(−, A) = {(C, ξ) | C ∈ C, ξ : C → A},

C/A((C1, ξ1), (C2, ξ2)) = {α ∈ C(C1, C2) | ξ2α = ξ1}.

1.2 Triangulated categories

An additive category is a preadditive one, with zero object and finite biproducts.
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Definition 1.2.1. A triangulated category is an additive category T endowed
with an autoequivalence Σ : T → T called shift functor and a class of sequences
of the form

X → Y → Z → ΣX,

with the property that the composition of any two succesive morphisms van-
ishes which are called triangles. The class of triangles must be closed under
isomorphisms and it is the subject of the following axioms:

T0. For every X ∈ T the sequence X
1X−→ X −→ 0 −→ ΣX is a triangle.

T1. Every map X → Y may be completed to a triangle X → Y → Z → ΣX.

T2. If X u−→ Y
v−→ Z

w−→ ΣX is a triangle then so are

Y
−v−→ Z

−w−→ ΣX
−Σu−→ ΣX and Σ−1Z

−Σ−1w−→ X
−u−→ Y

−v−→ Z.

T3. For any commutative diagram of the form

X
u //

f

��

Y
v //

g

��

Z
w // ΣX

X ′
u′
// Y ′

v′
// Z ′

w′
// ΣX ′

whose rows are triangles, there is h : Z → Z ′, not necessarily unique,
which makes commutative the diagram:

X
u //

f

��

Y
v //

g

��

Z
w //

h
��

ΣX

Σf

��
X ′

u′
// Y ′

v′
// Z ′

w′
// ΣX ′.

T4. The octahedral axiom: Any two triangles X → Y → Z → ΣX and Y ′ →
Y → Y ′′ → ΣY ′ may be completed to a commutative diagram

Y ′

��

Y ′

��
X // Y //

��

Z //

��

ΣX

yX // Y ′′ //

��

Z ′ //

��

ΣX

ΣY ′ ΣY ′
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Definition 1.2.2. A functor T → A into an abelian category A is called homo-
logical if it sends triangles into exact sequences. A contravariant functor T → A
which is homological regarded as a functor T o → A is called cohomological (see
[60, Definition 1.1.7 and Remark 1.1.9]). A functor F : T → S between trian-
gulated categories is called triangulated, provided that it commutes with shifts,
up to a natural isomorphism, and sends triangles in T into triangles in S.

Examples of (co)homological functors are the covariant (respectively con-
travariant) hom functors, that is

T (X,−) : T → Ab, repectively T (−, X) : T → Ab,
for every X ∈ T .

Another important homological functor is the Yoneda embedding HT : T →
mop(T ). By the dual of [40, Lemma 2.1] we obtain:

Theorem 1.2.3. If T is a triangulated category, then T has weak cokernels,
therefore mop(T ) is an abelian category. Moreover for every functor F : T →
A into an abelian category, the unique left exact functor F ∗ : mop(T ) → A
extending F is exact if and only if F is homological.

Note that the above Theorem gives the reason for the following:

Definition 1.2.4. The category mop(T ) (or often the equivalent category
mod(T )) is called the abelianization of the triangulated category T .

By [60, Corollary 5.1.23], mop(T ) is a Frobenius abelian category, with
enough injectives and enough projectives, which are, up to isomorphism, exactly
objects of the form T (K,−) for some K ∈ T .

If T and T ′ are triangulated categories, and F : T → T ′ is a triangulated
functor, then HT ′ ◦F is homological, so it induces a unique, up to isomorphism,
exact functor F̂ : mod(T )→ mod(T )′, such that HT ′ ◦F ∼= F̂ ◦HT . The duality
functor T → T o is (contravariant) triangulated, so it induces as before a unique
(contravariant) functor mod(T )→ mod(T )o, which is not hard to see that is a
duality. Therefore we obtain:

Lemma 1.2.5. [39, Corollary 2.11]. If T is a triangulated category, then there
is an equivalence of categories

E : mod(T )→ mop(T ), such that E ◦H ∼= H ′.

Definition 1.2.6. If

X0
φ0→ X1

φ1→ X2 → . . .

is a (direct) tower of objects and maps in a triangulated category with coprod-
ucts T , then its homotopy colimit is defined, up to a non-unique isomorphism,
by the triangle ∐

n≥0

Xn
1−φ−→

∐
n≥0

Xn → hocolim−−−−−→Xn → Σ
∐
n≥0

Xn,

where if we denote bu ui : Xn →
∐
n≤0Xn (i ≥ 0) the canonical injections, then

φui = ui+1φi for all i. Dually we define the notions inverse tower and homotopy
limit.
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1.3 Well–generaterd triangulated categories

Definition 1.3.1. Let T be a triangulated category. A subcategory T ′ is called
triangulated if ΣT ′ = T ′ and whenever we have a triangle X → Y → Z → ΣX
in T with X,Y ∈ T ’ then Y ∈ T ′.

Definition 1.3.2. A cardinal κ is said to be regular provided that it is infinite
and it can not be written as a sum of less than κ cardinals, all smaller than κ.

Definition 1.3.3. Let T be a triangulated category with coproducts. For
regular cardinal λ, a λ–localizing subcategory of T is a triangulated subcategory
closed under λ–coproducts. A localizing subcategory is a subcategory which is
λ–localizing, for all λ. Consequently a full triangulated subcategory L of T is
called localizing exactly if it is closed under taking coproducts in T . Given a
class of objects S ⊆ T , we denote by Loc(S) the smallest localizing subcategory
of T containing S. Dually are defined colocalizing subcategories.

Given an arbitrary full subcategory S ⊆ T , we denote

⊥S = {X ∈ T | T (X,S) = 0 for all S ∈ S}
S⊥ = {X ∈ T | T (S,X) = 0 for all S ∈ S},

We say that S ⊆ T is Σ-stable if it is closed under suspensions and desuspen-
sions, that is ΣS ⊆ S and Σ−1S ⊆ S. Note that if S a Σ-stable subcategory of
T , then ⊥S and S⊥ are triangulated subcategories.

Definition 1.3.4. Let T is a triangulated category with coproducts. Consider
a set of objects S ⊆ T which is Σ-stable. We say that T is generated (in the
triangulated sense) by S, provided that an object T ∈ T vanishes, whenever
T (S, T ) = 0 for all S ∈ S. Further we say that T is perfectly generated by the
set of objects S if S generates T and, for any S ∈ S, the map T (S,

∐
i∈I Xi)→

T (S,
∐
i∈I Yi) is surjective, for every set of maps {Xi → Yi | i ∈ I} such that

T (S,Xi)→ T (S, Yi) is surjective, for all i ∈ I. Finally T is called λ-compactly
generated, where λ is a regular cardinal, provided that T is perfectly generated
by a set of objects which are also λ–small, that is, every map S →

∐
i∈I Xi,

with S ∈ S, factors trough a coproduct
∐
i∈I′ Xi with card I ′ < λ; the category

T is well–generated if it is λ-compactly generated, for some λ. A ℵ0-compactly
generated triangulated category is also called simply compactly generated.

Following [42, Theorem A], this definition is equivalent to the original one
given by Neeman, modulo the assumption that the isomorphism classes of λ–
compact objects form a set. Note that, by Corollary 3.2.11, if T is perfectly
generated by S, then T coincides with its smallest ℵ1–localizing subcategory
which contains arbitrary coproducts of objects in S.

Let T be triangulated category which is κ-compactly generated by a set S.
For any λ ≥ κ we consider the subcategory of λ–compact objects, that is the
smallest λ localizing subcategory of T which contains S and denote it by T λ.
The objects in T λ are called λ–compact. Clearly it is essentially small and a
skeleton of T λ generates T . Moreover this subcategory is independent of S.
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1.4 Brown representability

Let T be a triangulated category with coproducts. Then for all X ∈ T the
contravariant hom functor T (−, X) : T → Ab is cohomological and sends co-
products into products. The converse of this property is called Brown repre-
sentability, namely:

Definition 1.4.1. We say that T satisfies Brown representability if it has co-
products and every cohomological functor F : T → Ab which sends coproducts
into products is (contravariantly) representable, that is, it is naturally isomor-
phic to T (−, X) for some X ∈ T .

Note that the dual T o satisfies Brown representability exactly if T has prod-
ucts and every homological product preserving functor F : T → Ab is (covari-
antly) representable, that is it is isomorphic to T (X,−) for some X ∈ T .

Theorem 1.4.2. [60, Theorem 8.3.3] and [60, theorem 8.6.1]. Well–generated
triangulated categories satisfy Brown representability. Compactly generated tri-
angulated categories satisfies Brown representability for the dual too.

Triangulated categories are usually not complete nor cocomplete. Therefore
usual techniques for constructing adjoints are useless. The following property
which is a direct consequence of Brown representability provides a way to over-
come this lack:

Theorem 1.4.3. [60, Theorem 8.4.4] or [44, Theorem 5.1.1]. Let T and S be
a triangulated categories.

(1) If T satisfies Brown representability then a triangulated functor F : T → S
has a right adjoint if and only if F preserves coproducts.

(2) If T o satisfies Brown representability then a triangulated functor F : T →
S has a left adjoint if and only if F preserves products.

Proof. Since (1) and (2) are dual, it is enough to prove (1). Let F : T → T ′
be a triangulated functor. If it has a right adjoint, then it preserves coproducts
by the general theory of adjoint functors. Conversely if it preserves coproducts,
then for all Y ∈ S the functor S(F (−), Y ) : T → Ab is cohomological and
sends coproducts into products. Therefore Brown representability for T gives
us an object X ∈ T such that S(F (−), Y ) ∼= T (,X) naturally. This object X is
unique, up to a natural isomorphism, by Yoneda Lemma. Thus the assignment
Y 7→ X induces a functor S → T which is the left adjoint of F .

Another interesting feature of triangulated categories satisfying Brown rep-
resentability is the existence of the products:

Theorem 1.4.4. [60, Proposition 8.4.6]. If the triangulated category T satis-
fies Brown representability, then it has products. Dually if T o satisfies Brown
representability, then T has coproducts.
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Proof. Let Xi ∈ T i∈I be a family of objects indexed by an arbitrary set I. The
functor

∏
i∈I T (−, Xi) is cohomological and sends coproducts into products,

therefore it is representable. An object X ∈ T representing it has to be the
product of the considered family.

1.5 The homotopy category and the derived cat-
egory

Throughout this section A, will denote an additive category. We suppose also
that A has split idempotents.

Definition 1.5.1. The the category of complexes over A which is denoted by
C(A) has as objects chains of objects and morphisms (these morphisms are
called differentials) in A of the form

X• = · · · → Xn−1 dn−1
X−→ Xn dnX−→ Xn+1 → · · · ,

such that dnXd
n−1
X = 0 for all n ∈ Z. The morphisms in the category C(A) are

families f• = (fn)n∈Z of morphisms in A commuting with differentials.

Limits and colimits in the category C(A) are computed component–wise,
provided that the respective constructions may be performed in A. In particular
C(A) is abelian (Grothendieck) if A is so.

Definition 1.5.2. The homotopy category of complexes K(A) has the same
objects as C(A) and the morphism space is defined by

K(A)(X•, Y •) = C(A)(X•, Y •)/∼

where ∼ is an equivalence relation called homotopy, defined as follows: two maps
of complexes (fn)n∈Z, (g

n)n∈Z : X → Y are homotopically equivalent if there is
sn : Xn → Y n−1, for all n ∈ Z such that fn − gn = dn−1

Y sn + sn+1dnX .

Note that C(A) is an exact category (in the sense of [35, Section 4]) with
respect to all short exact sequences which split in each degree (see [35, Example
4.3]), and K(A) may be constructed as the stable category of this exact category
by [35, Example 6.1]. Hence K(A) is a triangulated category. Note that the
structure of triangulated category comes with a translation functor denoted by
Σ, where (ΣX)n = Xn+1 and dnΣX = −dn+1

X .

In the rest of the section, assume A is abelian. For a complex X• ∈ C(A)
and an n ∈ Z, denote Zn(X•) = ker dn and Bn(X•) = im dn−1, and call them
the object of n-th cocycles and the object of n-th boundaries respectively. It is
clear that Bn(X•) ≤ Zn(X•) ≤ Xn, thus we are allowed to consider Hn(X•) =
Zn(X•)/Bn(X•), the n-th cohomology of X•. A complex X• is called acyclic if
Hn(X•) = 0 for all n ∈ Z.
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Definition 1.5.3. A map f• : X• → Y • in K(A) which induces isomorphisms
in cohomology is called quasi–isomorphism. The derived category D(A) is the
category of fractions of K(A) with respect to all quasi–isomorphisms.

Note that two complexes X• and Y • are isomorphic in K(A) if there are
maps of complexes f• : X• → Y • and g• : Y • → X• such that both composi-
tions g•f• and f•g• are homotopically equivalent to the respective identities. If
this is the case, it is not hard to see that X• and Y • have the same cohomology,
so the functors Hn : C(A)→ A, n ∈ Z, induce well defined functors K(A)→ A.
Therefore the full subcategory of acyclic complexes is a triangulated subcate-
gory of K(A). Then D(A) can be obtained as as the Verdier quotient (see
[60, Section 2.1]) of K(A) modulo the triangulated subcategory of all acyclic
complexes. It follows D(A) is triangulated too.

A priori there is no reason to expect that D(A) has small hom–sets, because
this is the case of a Verdier quotient in general. However we will only consider
derived categories for which, at some point, we are able to show that they have
small sets.

We will see every object of A as a complex concentrated in degree zero,
providing embeddings of A in any of the categories C(A), K(A) or D(A). Note
also that, if A has (co)products then C(A) and K(A) have (co)products and
the canonical functor C(A) → K(A) preserves them. If, in addition, these
(co)products are exact then the full subcategory of acyclic complexes is closed
under (co)products, therefore D(A) has also (co)products and the quotient func-
tor K(A) → D(A) preserves them, by [44, Theorem 3.5.1]. Note that, the ex-
actness of (co)products in A is only a sufficient condition, and not a necessary
one, for the existence of (co)products in D(A).
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Chapter 2

Abelianization

In this chapter we reformulate Brown representability at the level of the abelian-
ization of the considered triangulated category and we give a new proof to a
representability criterion due to Heller. The results presented here were first
published in [9] and [51].

2.1 A reformulation of Brown representability

We call an abelian category A admissible if it is AB3 and has enough injectives.
It is well-known that such a category must be also AB4.

Theorem 2.1.1. The following are equivalent, for a triangulated category with
arbitrary coproducts T :

(i) T satisfies the Brown representability theorem.

(ii) For every homological, coproducts preserving functor f : T → A, into an
admissible abelian category A, the induced functor

f∗ : mod(T )→ A

has a right adjoint.

(iii) Every exact, coproducts preserving functor F : mod(T ) → A, into an
admissible, abelian category A, has a right adjoint.

(iv) Every exact, coproducts preserving functor F : mod(T )→ Abo has a right
adjoint.

Proof. (i)⇒(ii). Let f : T → A be a homological functor into an abelian,
admissible category A. Let I ∈ A be an injective object. Then the functor

A(f(−), I) = A(−, I) ◦ f : T → Ab

19
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is cohomological, and sends coproducts into products. Then it is representable,
by Brown representability theorem; so there is a unique, up to a natural iso-
morphism, xI ∈ T , such that A(f(−), I) ∼= T (−, xI). Since A has enough
injectives, the assignment I 7→ H(xI) defines a unique, up to isomorphism, left
exact functor G : A → mod(T ). It is directly verified that G is the right adjoint
of f∗.

(ii)⇒(iii) is obvious, since, under the assumptions of (iii), we have

F ∼= (F ◦H)∗.

(iii)⇒(iv) follows immediately since Abo is admissible.
(vi)⇒(i). Let f : T → Ab be a cohomological functor, sending coproducts

into products. Then the functor

F : mod(T )→ Abo, F (X) = (mod(T ))(X, f)

is exact, coproducts preserving (actually F is the composition of f∗ with the
duality functor of Ab). By hypothesis, F has a right adjoint G : Abo → mod(T ).
We deduce F (X) ∼= (mod(T ))(X,G(Z)). Further f ∼= G(Z), showing that
f ∈ mod(T ) and f has to be injective, since it represents the exact functor F .
Therefore, f ∼= T (−, x), for some x ∈ T .

We record also the dual of the preceding results (for this, we will say that
the abelian category A is co-admissible if Ao is admissible):

Theorem 2.1.2. The following are equivalent, for a triangulated category with
arbitrary products T :

(i) T o satisfies the Brown representability theorem.

(ii) For every homological, products preserving functor f : T → A, into a
co-admissible, abelian category A, the induced functor

f∗ : mop(T )→ A

has a left adjoint.

(iii) Every exact, products preserving functor F : mop(T ) → A, into a co-
admissible, abelian category A, has a left adjoint.

(iv) Every exact, products preserving functor F : mop(T ) → Ab has a left
adjoint.

Remark 2.1.3. According to Lemma 1.2.5, for any triangulated category T , we
have an equivalence of categories E : mod(T )→ mop(T ), such that E◦H = H ′,
we may freely interchange mod(T ) and mop(T ) in Theorems 2.1.1 and 2.1.2.

Remark 2.1.4. Consider a triangulated category, with arbitrary coproducts
(products) T . Theorems 2.1.1 and 2.1.2 provide reformulations of the Brown
representability theorem for T respectively T o in terms of abelian category
mod(T ).
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2.2 Heller’s criterion revisited

In this section we consider a triangulated T with split idempotents. Recall
that that T has split idempotents, provided that T has countable coproducts
or products, according to [60, Proposition 1.6.8] or its dual.

Let F : T → Ab be a chomological functor, and consider F ∗ : mop(T )→ Ab
the unique exact functor extending F (see 1.2.3). Observe that in this particular
case when the codomain of F is the category Ab of all abelian groups, then it
can be easily seen that F ∗(X) ∼= HomT o(X,F ), naturally for all X ∈ mop(T ).
Thus we obtain:

Lemma 2.2.1. If T is a triangulated category with split idempotents, then a
homological functor F : T → Ab is representable if and only if its extension
F ∗ : mop(T )→ Ab is representable.

Proof. As before F ∗(X) ∼= HomT o(X,F ), for all X ∈ mop(T ). If F is repre-
sentable, then F ∈ mop(T ), so F ∗ is represented by F . Conversely if F ∗ is
representable by an object in mop(T ) then this object must be isomorphic to
F , therefore F ∈ mop(T ). Because F ∗ is exact, F must be projective, hence
representable (see [60, Lemma 5.1.11]).

Lemma 2.2.2. If T is a triangulated category with split idempotents, then a
cohomological functor F : T → Ab has a solution object if and only if F ∗ :
mop(T )→ Ab has a solution object.

Proof. Suppose F has a solution object, i.e. there is a functorial epimorphism
H ′(K) = T (K,−) → F → 0, with K ∈ T . In order to show that F ∗ has a
solution object, it is enough to prove that the induced natural transformation

HomT o(−, H ′(K))→ HomT o(−, F ) ∼= F ∗

is an epimorphism. That is, we want to show that the map

HomT o(X,H ′(K))→ HomT o(X,F )

is surjective, for all X ∈ mop(T ). According to [60, 5.1.23] every finitely
presentable T o–module X admits an embedding 0 → X → T (U,−), (in
mod (T o), that is an epimorphism from the projective

H ′(U)→ X → 0,

starting from the projective object H ′(U) in the opposite category mop(T ).
Since H ′(K) ∈ mop(T ) is projective–injective and F ∗ is exact, we obtain a
diagram with exact rows:

HomT o(H ′(U), H ′(K)) //

��

HomT o(X,H ′(K)) //

��

0

HomT o(H ′(U), F ) // HomT o(X,F ) // 0

.



22 CHAPTER 2. ABELIANIZATION

By Yoneda lemma we know that the first vertical map is isomorphic to

T (K,U)→ F (U),

hence it is surjective, thus the diagram above proves the direct implication.
Conversely if there is X ∈ mop(T ) and a natural epimorphism

HomT o(−, X)→ HomT o(−, F )→ 0,

then let H ′(K)→ X → 0 be an epimorphism in mod(T o) (that is a monomor-
phism in the opposite direction in mop(T )), with K ∈ T . Consider the com-
posed map

HomT o(−, H ′(K))→ HomT o(−, X)→ HomT o(−, F ).

Evaluating it at H ′(U) for an arbitrary U ∈ T , we obtain a surjective natural
map T (K,U)→ F (U), hence F has a solution object.

The next Theorem was shown by Heller in [28, Theorem 1.4], hence we
call it Heller’s criterion of representability. However, our argument is different
of Heller’s proof, and it seems to be more conceptual, because the conclusion
follows from the celebrated Freyd’s Adjoint Functor Theorem.

Theorem 2.2.3. If T is a triangulated category with products, then a homo-
logical product preserving functor F : T → Ab is representable if and only if it
has a solution object.

Proof. Under the hypotheses imposed on T and F , the abelian category mop(T )
is complete and the induced functor F ∗ : mop(T )→ Ab preserves limits. There-
fore it is representable if and only if it has a solution object, by Freyd’s Adjoint
Functor Theorem. Thus the conclusion follows by combining Lemmas 2.2.1 and
2.2.2.

Remark 2.2.4. Theorem 2.2.3 says more than the Neeman’s Freyd style rep-
resentability theorem [61, Theorem 1.3]. Indeed the cited result states that if
every cohomological functor which sends coproducts into products has a solu-
tion objects, then every such a functor is representable, whereas Theorem 2.2.3
involves a fixed functor.

In a particular case, namely in the presence of products, we can derive
from the results above the dual of [63, Proposition 1.4]. In order to state this,
recall that if T is a full subcategory of T then a T –preenvelope of T ∈ T is
a morphism T → XT with XT ∈ T such that the induced map T (XT , X) →
T (T,X) is surjective for all X ∈ T . Dually we define the concept of precover.
The subcategory T is called preenveloping is every object in T admits a T -
preenvelope.

Corollary 2.2.5. Let T ′ be a triangulated category with products, and let T be
a colocalizing subcategory. The following are equivalent:
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(i) The inclusion T → T ′ has a left adjoint.

(ii) Every object in T ′ admits a T –preenvelope.

Proof. Since the implication (i)⇒(ii) follows from the general theory of adjoint
functors, we only need to show the converse. But this follows immediately from
Theorem 2.2.3 since, if I : T → T ′ is the inclusion functor, then for every T ∈ T ′
the functor T ′(T, I(−)) : T → Ab is homological, preserves products and has a
solution object, given by the functorial epimorphism T (XT ,−)→ T ′(T, I(−)),
where T → XT is a T –preenvelope of X.
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Chapter 3

Deconstructibility in
triangulated categories

In this chapter we define deconstructible triangulated categories and we show
that they satisfies Brown representability. One important feature of our ap-
proach is that it can be dualized. Further we show that well–generated trian-
gulated categories are deconstructible, therefore we find a new proof of the fact
that they satisfy Brown representability. The material is essentialy taken from
[51] and [49], but some changes are also operated. Namely, in the same sense
in which our Theorem 2.2.3 is an improvement of Neeman’s [61, Theorem 1.3],
we improve the main result of [49], more precisely [49, Theorem 3.7], which
originally uses the Neeman’s result, in order to obtain Theorem 3.3.3.

3.1 Deconstructibiliy

Consider a Σ-closed set of objects in T and denote it by S. We define Prod(S)
to be the full subcategory of T consisting of all direct factors of products of
objects in S. Next we define inductively Prod0(S) = {0} and Prodn(S) is the
full subcategory of T which consists of all objects Y lying in a triangle

X → Y → Z → ΣX

with X ∈ Prod(S) and Z ∈ Prodn(S). Clearly Prod1(S) = Prod(S) and the
construction leads to an ascending chain Prod0(S) ⊆ Prod1(S) ⊆ · · · . Recall
that S is Σ-closed, hence the same is true for Prodn(S), by [61, Remark 07].
The same [61, Remark 07] says, in addition, that if X → Y → Z → ΣX is a
triangle with X ∈ Prodn(S) and Prodm(S) then Z ∈ Prodn+m(S). An object
X ∈ T will be called S-cofiltered if it may be written as a homotopy limit
X ∼= holim←−−−Xn of an inverse tower

X0 ← X1 ← X2 ← · · ·

25
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with X0 ∈ Prod0(S), and Xn+1 lying in a triangle Pn → Xn+1 → Xn → ΣPn,
for some Pn ∈ Prod1(S). Inductively we have Xn ∈ Prodn(S), for all n ∈ N∗.
The dual notion must be surely called filtered, and the terminology comes from
the analogy with the filtered objects in an abelian category (see [27, Definition
3.1.1]). Further the same analogy leads to the folllowing:

Definition 3.1.1. We say that T (respectively, T o) is deconstructible if T has
coproducts (products) and there is a Σ-closed set S ⊆ T , which is not a proper
class, such that every object X ∈ T is S-filtered (cofiltered).

Note that we may define deconstructibility without closure under suspen-
sions and desuspension. Indeed if every X ∈ T is S–(co)filtered, then it is also
S–(co)filtered, where S is the closure of S under suspensions and desuspensions.

Lemma 3.1.2. Let T be a triangulated category with products. If T o is decon-
structible, then every homological product preserving functor F : T → Ab has a
solution object.

Proof. We shall prove a statement equivalent to the conclusion, namely that the
category of elements T /F has a weakly initial object.

Let S ⊆ T be a Σ-closed set of objects, such that every object of T is S–
cofiltered. By [61, Lemma 2.3], we know that the category Prodn(S)/F has a
weakly initial object denoted (Tn, tn), for all n ∈ N. Let I be the non–empty
set of all inverse towers of the form

T0
w0←− T1

w1←− T2 ←− · · ·

with F (wn)(tn+1) = tn, for all n ∈ N, and denote by T (i) the homotopy limit
of the tower i ∈ I. By [6, Lemma 5.8(2)], there is an exact sequence

0→ lim←−
(1)F (Tn[−1])→ F (holim←−−−Tn)→ lim←−F (Tn)→ 0.

Clearly (tn)n∈N ∈ lim←−F (Tn), thus there exists

t(i) ∈ F (T (i)) = F (holim←−−−Tn)

which maps in (tn)n∈N via the surjective morphism above. We claim that (T, t)
is a weakly initial object in T /F , where T =

∏
i∈I T (i) and t = (t(i))i∈I . In

order to prove the claim, consider an object X ∈ T . By hypothesis, there is an
inverse tower

X0
u0←− X1

u1←− X2 ←− · · ·
whose homotopy limit is X such that X0 = 0 ∈ Prod0(S), and every Xn+1 lies

in a triangle Pn → Xn+1
un−→ Xn → ΣPn, for some Pn ∈ Prod(S). We use again

[6, Lemma 5.8(2)] for constructing the commutative diagram with exact rows:

0 // lim←−
(1)T (T,Xn[−1]) //

��

T (T, holim←−−−Xn) //

��

lim←−T (T,Xn) //

��

0

0 // lim←−
(1)F (Xn[−1]) // F (holim←−−−Xn) // lim←−F (Xn) // 0
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whose columns are induced by the natural transformations which correspond
to t ∈ F (T ) under Yoneda Lemma. If we show that the two extreme vertical
arrows are surjective, the same is true for the middle arrow too, and we are
done. But for the first vertical map this follows by the commutative diagram:∏

n∈N T (T,Xn[−1]) //

��

lim←−
(1)T (T,Xn[−1])

��∏
n∈N F (Xn[−1]) // lim←−

(1)F (Xn[−1])

whose arrows connected with the south-west corner are both surjective.
In order to prove that the third vertical map above is surjective, we con-

sider an element x ∈ lim←−F (Xn), that is x = (xn)n∈N ∈
∏
F (Xn) such that

F (un)(xn+1) = xn, for all n ∈ N. Next we construct a commutative diagram

T0

f0

��

T1
w0oo

f1

��

T2
w1oo

f2

��

· · ·oo

X0 X1u0

oo X2u1

oo · · ·oo

whose upper line is a tower in I, and satisfying F (fn)(tn) = xn for all n ∈
N. This construction is performed inductively as follows: f0 comes from the
fact that (T0, t0) = (0, 0) is weakly initial in Prod0(S)/F . Suppose the first n
steps are done. We construct the following commutative diagram whose rows
are triangles and the middle square is homotopy pull-back (see [60, Definition
1.4.1]):

Pn // Yn+1
//

��

Tn //

fn

��

ΣPn

Pn // Xn+1
un // Xn

// ΣPn

The upper triangle shows that Yn+1 ∈ Prodn+1(S) where (Tn+1, tn+1) is weakly
initial, hence we find a map (Tn+1, tn+1) → (Yn+1, yn+1) in Prodn+1(S)/F .
Now Yn+1 is obtained via a triangle

Yn+1 → Tn ×Xn+1
(fn,−un)−→ Xn → ΣYn+1.

Applying the homological functor F we get an exact sequence:

F (Yn+1)→ F (Tn)× F (Xn+1)
(F (fn),−F (un))−→ F (Xn).

Since F (fn)(tn)− F (un)(xn+1) = xn − xn = 0 we get an element yn+1 ∈ Yn+1,
which maps in (tn, xn+1), via the first morphism of the exact sequence above.
The morphism fn+1 is the composition Tn+1 → Yn+1 → Xn+1. The upper row
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above is, as noticed, an inverse tower in I, and let denote it by i. Finally the
element t ∈ T maps to (xn)n∈N ∈ lim←−F (Xn), via the map F (T ) → F (T (i)) →
lim←−F (Tn) → lim←−F (Xn), proving that the map lim←−T (T,Xn) → lim←−F (Xn) is
surjective.

Combining Theorem 2.2.3 and Lemma 3.1.2 we obtain:

Theorem 3.1.3. Let T be a triangulated category with products. If T o is
deconstructible, then T o satisfies Brown representability.

The above Theorem is a useful criterion for a triangulated category to sat-
isfy Brown representability, as we will see in the next chapters. We call it
the deconstructibility criterion. Note that as all considerations in this section,
deconstructibility criterion may be immediately dualized.

3.2 Projective classes

The following Lemma is the dual of [6, Lemma 5.8 (2)]. Note that we give a
slightly more general version, replacing the category Ab (more precisely Abo)

with an abelian AB4 category A, where the derived functors colim−−−→
(i) of the

colimits are computed in the usual manner, by using homology of a complex.
Moreover, [6, Lemma 5.8 (1)] is a direct consequence of this dual, together with

the exactness of colimits in Ab (that is colim−−−→
(1) = 0).

Lemma 3.2.1. Consider a tower x0
φ0→ x1

φ1→ x2
φ2→ x3 → · · · in T . If F : T →

A a homological functor which preserves countable coproducts into an abelian
AB4 category A, then we have a Milnor exact sequence

0→ colim−−−→F (xn)→ F (hocolim−−−−−→xn)→ colim−−−→
(1)F (Σxn)→ 0

and colim−−−→
(i) F (xn) = 0 for i ≥ 2.

Corollary 3.2.2. Consider a tower x0
φ0→ x1

φ1→ x2
φ2→ x3 → · · · in T . If

F : T → A is a homological functor, which preserves countable coproducts into
an abelian AB4 category, such that F (Σiφn) = 0 for all i ∈ Z and all n ≥ 0,
then F (hocolim−−−−−→xn) = 0.

Proof. With our hypothesis we have colim−−−→F (xn) = 0 = colim−−−→
(1)F (Σxn), so

F (hocolim−−−−−→xn) = 0 by the Milnor exact sequence of Lemma 3.2.1.

Recall that a pair (P,F) consisting of a class of objects P ⊆ T and a class
of morphisms F is called projective class if Σn(P) ⊆ P for all n ∈ N,

P = {p ∈ T | T (p, φ) = 0 for all φ ∈ F},

F = {φ ∈ T | T (p, φ) = 0 for all p ∈ P}
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and each x ∈ T lies in a triangle Σ−1x′ → p → x → x′, with p ∈ P and
x → x′ in F (see [19]). Note that we work only with projective classes which
are stable under (de)suspensions; generally it is possible to define a projective
class without this condition. Clearly, P is closed under coproducts and direct
factors, F is an ideal, and F is stable under (de)suspensions. Moreover P and F
determine each other. A triangle of the form x→ y → z → Σx is called F–exact
if the morphism z → Σx belongs to F. If this is the case, the morphisms x→ y
and y → z are called F–monic, respectively F–epic.

Let (P,F) be a projective class in T . The inclusion functor ϕ : P → T
induces a unique right exact functor ϕ∗ making commutative the diagram

P
ϕ //

HP
��

T

HT
��

mod(P)
ϕ∗ // mod(T )

where HP and HT are the respective Yoneda functors. More explicitly,

ϕ∗(P(−, p)) = T (−, p)

for all p ∈ P, and ϕ∗ is right exact. Moreover since ϕ is fully–faithful, ϕ∗ has
the same property [39, Lemma 2.6].

Fix a projective class (P,F) in the triangulated category T . To construct a
weak kernel of a morphism q → r in P we proceed as follows: The morphism
fits into a triangle x → q → r → Σx; let Σ−1x′ → p → x → x′ an F–exact
triangle with p ∈ P; then the composite map p→ x→ q gives the desired weak
kernel. Therefore mod(P) is abelian (for example by [39, Lemma 2.2], but this
is also well–known). Moreover the restriction functor

ϕ∗ : mod(T )→ mod(P), ϕ∗(X) = X ◦ ϕ for all X ∈ mod(T )

is well defined and it is the exact right adjoint of ϕ∗, by [43, Lemma 2].
We know by [19, Lemma 3.2] that a pair (P,F) is a projective class, provided

that P is a class of objects closed under direct factors, F is an ideal, P and F
are orthogonal (that means, the composite p→ x→ x′ is zero for all p ∈ P and
all x → x′ in F) and each object x ∈ T lies in an F–exact triangle Σ−1x′ →
p→ x→ x′, with p ∈ P. If S is a set of objects in T , then Add(S) denotes, as
usual, the class of all direct factors of arbitrary coproducts of objects in S. The
following lemma is straightforward (see also [19, Definition 5.2 and the following
paragraph]):

Lemma 3.2.3. Consider a Σ-closed set S of objects in T . Denote by P =
Add(S), and let F be the class of all morphisms φ in T such that T (s, φ) = 0
for all s ∈ S. Then (P,F) is a projective class.

We will say that the projective class (P,F) given in Lemma 3.2.3 is induced
by the set S. Note also that if S is an essentially small subcategory of T , such
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that S is Σ=closed, then we will also speak about the projective class induced
by S, understanding the projective class induced by a representative set of
isomorphism classes of objects in S. If, in particular, κ is a regular cardinal,
S consists of κ–small objects and it is closed under coproducts of less than κ
objects (for example if S is the subcategory of all κ-compact object of T ), then
mod(P) is equivalent to the category of all functors So → Ab which preserve
products of less than κ objects, by [42, Lemma 2], category used extensively in
[60] as a locally presentable approximation of mod(T ).

Remark 3.2.4. Under the hypotheses of Lemma 3.2.3, a map x → y in T is
F–monic (F–epic) if and only if the induced map T (s, x) → T (s, y) injective
(respectively surjective) for all s ∈ S.

As in [6] and [19], given a projective class (P,F) in T , we construct two
towers of morphisms associated to each x ∈ T as follows: We denote x0 = Σ−1x.
Inductively, if xn ∈ T is given, for n ∈ N, then there is an F-exact triangle

Σ−1xn+1 → pn → xn
φn→ xn+1

in T , by definition of a projective class. Consider then the tower:

Σ−1x = x0
φ0→ x1

φ1→ x2
φ2→ x3 → · · · .

Such a tower is called a F-phantom tower of x. The explanation of the terminol-
ogy is that morphisms φn belong to F for all n ∈ N, and F may be thought as a
generalization of the ideal of classical phantom maps in a compactly generated
triangulated category. (Clearly, F coincides with the ideal of classical phantom
maps, provided that the projective class (P,F) is induced by the full essentially
small subcategory consisting of all compact objects.)

Observe that there are more F-phantom towers associated to the same ele-
ment x ∈ T , according with the choices of the F-epic map pn → xn at each step
n ∈ N. The analogy with projective resolutions in abelian categories is obvious.

Choose an F-phantom tower of x ∈ T as in the definition above. We denote
by φn the composed map φn−1 . . . φ1φ0 : Σ−1x→ xn, for all n ∈ N∗, and we set
φ0 = 1Σ−1x. Then let xn be defined, uniquely up to a non unique isomorphism,

by the triangle Σ−1x
φn→ xn → xn → x. The octahedral axiom allows us to

complete the commutative diagram

pn

��

pn

��
Σ−1x

φn // xn //

φn

��

xn //

��

x

Σ−1x
φn+1

// xn+1
//

��

xn+1 //

��

x

Σpn Σpn



3.2. PROJECTIVE CLASSES 31

with the triangle in the second column.
Therefore we obtain an another tower of objects

0 = x0 → x1 → x2 → x3 → · · · ,

where for each n ∈ N we have a triangle pn → xn → xn+1 → Σpn, with pn ∈ P
chosen in the construction of the above F-phantom tower. Such a tower is called
a F-cellular tower of x ∈ T .

Considering homotopy colimits of the F-phantom and F-cellular towers, we
obtain a sequence

Σ−1x→ hocolim−−−−−→xn → hocolim−−−−−→xn → x.

It is not known whether the induced sequence can be chosen to be a triangle
(see [6, p. 302]). However the answer to this question is yes, provided that T is
the homotopy category of a suitable stable closed model category in the sense
of [31], or T is the underlying category of a stable derivator (see [38, Corollary
11.4]).

Proposition 3.2.5. Let (P,F) be a projective class in T , and let denote by
ϕ : P → T the inclusion functor. For every x ∈ T we consider an F-phantom
tower and an F-cellular tower as above. Then we have an exact sequence

0→
∐

(ϕ∗ ◦HT )(xn)
1−shift−→

∐
(ϕ∗ ◦HT )(xn)→ (ϕ∗ ◦HT )(x)→ 0,

where ϕ∗ : mod(T )→ mod(P) is the restriction functor. Consequently

colim−−−→(ϕ∗ ◦HT )(xn) ∼= (ϕ∗ ◦HT )(x) and colim−−−→
(1)(ϕ∗ ◦HT )(xn) = 0.

Proof. By applying the functor ϕ∗ ◦ HT to the diagram above defining an F-
cellular tower associated to x, we obtain a commutative diagram in the abelian
category with coproducts mod(P):

0 // (ϕ∗ ◦HT )(xn) //

0

��

(ϕ∗ ◦HT )(xn) //

��

(ϕ∗ ◦HT )(x) // 0

0 // (ϕ∗ ◦HT )(xn+1) // (ϕ∗ ◦HT )(xn+1) // (ϕ∗ ◦HT )(x) // 0

The conclusion follows by [44, Lemma 7.1.2].

Consider a regular cardinal κ. Recall that by κ-coproducts we understand
coproducts of less that κ-objects.

Proposition 3.2.6. Let κ be a regular cardinal and let (P,F) be a projective
class in T . Denote by ϕ : P → T the inclusion functor. Then the functor
ϕ∗ : mod(T ) → mod(P), ϕ∗(X) = X ◦ ϕ preserves κ–coproducts if and only if
F is closed under κ–coproducts (of maps).
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Proof. The exact functor ϕ∗ having a fully–faithful left adjoint induces an equiv-
alence mod(T )/Kerϕ∗ → mod(P). Since mod(T ) is AB4, we know that ϕ∗
preserves κ–coproducts if and only if Kerϕ∗ is closed under κ–coproducts. Ob-
viously F = {φ | (ϕ∗ ◦ HT )(φ) = 0}. Using the proof of [40, Section 3], we
observe that

Kerϕ∗ = {X ∈ mod(T ) | X ∼= imHT (φ) for some φ ∈ F}.

Now suppose F to be closed under κ–coproducts, and let {Mλ | λ ∈ Λ} be a set
of objects in Kerϕ∗, with the cardinality less than κ. Thus Mλ

∼= imHT (φλ) for
some φλ ∈ F, for all λ ∈ Λ. Therefore, using again condition AB4 (coproducts
in mod(T ) are exact, so they commute with images), we obtain:∐

λ∈Λ

Mλ
∼=
∐
λ∈Λ

imHT (φλ) ∼= im

(∐
λ∈Λ

HT (φλ)

)
∼= imHT

(∐
λ∈Λ

φλ

)
,

showing that
∐
λ∈ΛMλ ∈ Kerϕ∗.

Conversely, if Kerϕ∗ is closed under κ–coproducts, and {φλ | λ ∈ Λ} is a set
of maps in F, with the cardinality less than κ, then

ϕ∗

(
imHT

(∐
λ∈Λ

φλ

))
= ϕ∗

(∐
λ∈Λ

imHT (φλ)

)
= 0,

so F is closed under κ–coproducts.

We call κ–perfect the projective class (P,F) if the equivalent conditions of
Proposition 3.2.6 hold true. The projective class will be called perfect if it is κ–
perfect for all regular cardinals κ, that is, F is closed under arbitrary coproducts.
Following [19], we say that a projective class (P,F) generates T if for any x ∈ T ,
we have x = 0 provided that T (p, x) = 0, for each p ∈ P. Immediately, we
can see that (P,F) generates T if and only if ϕ ◦ HT : T → mod(P) reflects
isomorphisms, that is, if α : x → y is a morphism in T such that the induced
morphism (ϕ◦HT )(α) is an isomorphism in mod(P), then α is an isomorphism in
T , where ϕ : P → T denotes, as usual, the inclusion functor. Another equivalent
statement is F does not contain non–zero identity maps. Consider now an
essentially small subcategory S of T which is closed under suspensions and
desuspensions, and (P,F) the projective class induced by S. Since coproducts
of triangles are triangles, we conclude by Remark 3.2.4 that F is closed under
coproducts exactly if S satisfies the following condition: If xi → yi with i ∈ I
is a family of maps, such that T (s, xi) → T (s, yi) is surjective for all i ∈ I,
then the induced map T (s,

∐
xi) → T (s,

∐
yi) is also surjective. Thus (P,F)

perfectly generates T in the sense above if and only if S perfectly generates T
in the sense given in [44, Section 5] (see also [43] for a version relativized at the
cardinal κ = ℵ1).

Lemma 3.2.7. Consider a tower x0
φ0→ x1

φ1→ x2
φ2→ x3 → · · · in T . If (P,F) is

an ℵ1–perfect projective class in T and φn ∈ F for all n ≥ 0, then

hocolim−−−−−→xn = 0.
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Proof. We apply Corollary 3.2.2 to the homological functor, which preserves
countable coproducts ϕ∗ ◦HT : T → mod(P), where ϕ : P → T is the inclusion
functor.

Proposition 3.2.8. If (P,F) is a ℵ1–perfect projective class in T , then a nec-
essary and sufficient condition for (P,F) to generate T is

lim
n∈N
T (xn, y) = 0 = lim

n∈N
(1)T (xn, y),

for all x, y ∈ T and any choice

x = x0
φ0→ x1

φ1→ x2
φ2→ x3 → · · · ,

of an F-phantom tower of x. Here by lim(1) we understand the first derived
functor of the limit.

Proof. Let show the sufficiency first. If x ∈ T has the property T (p, x) = 0 for
all p ∈ P, then 1x ∈ F and a F-phantom tower of x is

x = x0
1x→ x1 = x

1x→ x2 = x→ · · · .

Then 0 = lim
n∈N
T (xn, x) = T (x, x), so x = 0.

Now we show the necessity. Let x, y ∈ T and consider an F-phantom tower
of x as above. Applying the functor T (−, y) to this tower, we obtain a sequence
of abelian groups:

T (x, y) = T (x0, y)
(φ0)∗← T (x1, y)

(φ1)∗← T (x2, y)
(φ2)∗← T (x3, y)← · · · .

Computing the derived functors of the limit of such a sequence in the usual
manner, we know that lim(n) is zero for n ≥ 2 and lim, lim(1) are given by the
exact sequence:

0→ lim
n∈N
T (xn, y)→

∏
n∈N
T (xn, y)

(1−φ)∗→
∏
n∈N
T (xn, y)→ lim

n∈N
(1)T (xn, y)→ 0,

where φ :
∐
n∈N xn →

∐
n∈N xn is constructed as in the Definition of the homo-

topy colimit 1.2.6. Applying T (p,−) to the commutative squares which define
φ, we obtain also commutative squares:

T (p, xn) //

0=T (p,φn)

��

T (p,
∐
n∈N

xn)

T (p,φ)

��
T (p, xn+1) // T (p,

∐
n∈N

xn)

(n ∈ N),
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for all p ∈ P. According to Proposition 3.2.6, the ℵ1-perfectness of (P,F) means
that T (−,

∐
n∈N xn)|P is the coproduct in mod(P) of the set

{T (−, xn)|P | n ∈ N},

thus we deduce T (p, φ) = 0. Now T (p, 1 − φ) = T (p, 1) − T (p, φ) = T (p, 1)
is an isomorphism, for all p ∈ P, so 1 − φ is an isomorphism, because (P,F)
generates T . Consequently

lim
n∈N
T (xn, y) = 0 = lim

n∈N
(1)T (xn, y).

Remark 3.2.9. The hypotheses of Proposition 3.2.8 are almost identical with
those of [19, Proposition 4.4], except the fact that we require, in addition, the ℵ1-
perfectness for (P,F). Moreover, the conclusion of [19, Proposition 4.4] (namely:
the Adams spectral sequence abutting T (x, y) is conditionally convergent) is

equivalent to our conclusion (lim and lim(1) to be zero). The proofs are also
almost identical. Despite that, we have given a detailed proof, because, without
our additional condition, we do not see how we can conclude, with our notations,
that T (p, φ) = 0. Thus we fill a gap existing in the proof of [19, Proposition 4.4],
due to the missing assumption of ℵ1-perfectness. On the other hand, we do not
have a counterexample showing that the conclusion cannot be inferred without
this assumption, so the problem is open. Note also that the terms of the Adams
spectral sequence of [19] do not depend, for sufficiently large indices, of the
choice of the F-projective resolution of x ∈ T , so the conclusion of Proposition
3.2.8 may be formulated simply: The Adams spectral sequence abutting T (x, y)
is conditionally convergent, for any two x, y ∈ T .

Theorem 3.2.10. Let (P,F) be an ℵ1–perfectly generating projective class in
T . Then for every x ∈ T , and every choice

0 = x0 → x1 → x2 → x3 → · · ·

of an F-cellular tower for x we have hocolim−−−−−→xn ∼= x.

Proof. The homotopy colimit of the F-cellular tower above is constructed via
triangle ∐

n∈N
xn

1−shift−→
∐
n∈N

xn → hocolim−−−−−→xn → Σ
∐
n∈N

xn.

We apply to this triangle the homological functor ϕ∗◦HT which commutes with
countable coproducts. Comparing the resulting exact sequence with the exact
sequence given by Proposition 3.2.5, we obtain a unique isomorphism

(ϕ∗ ◦HT )(hocolim−−−−−→xn)→ (ϕ∗ ◦HT )(x),

which must be induced by the map hocolim−−−−−→xn → x. The hypothesis (P,F)
generates T tells us that hocolim−−−−−→xn ∼= x.
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Recall that an ℵ1–localizing subcategory of T means a triangulated subcat-
egory closed under countable coproducts.

Corollary 3.2.11. If (P,F) is an ℵ1–perfectly generating projective class in T ,
then T is the smallest ℵ1–localizing subcategory of T , which contains P.

Proof. Let x ∈ T and let

0 = x0 → x1 → x2 → x3 → · · ·

be an F-cellular tower for x. Since for every n ≥ 0 there exits a triangle pn →
xn → xn+1 → Σpn, with pn ∈ P (see the definition of an F-cellular tower), we
may see inductively that xn belongs to the smallest triangulated subcategory
of T which contains P. Now hocolim−−−−−→xn belongs to the smallest ℵ1-localizing
subcategory of T which contains P, and the conclusion follows by Theorem
3.2.10.

Remark 3.2.12. Let (P,F) be an ℵ1–perfectly generating projective class in T ,
and x ∈ T . If we chose an F-phantom tower

Σ−1x = x0
φ0→ x1

φ1→ x2
φ2→ x3 → · · ·

and an F-cellular tower

0 = x0 → x1 → x2 → x3 → · · ·

for x, then hocolim−−−−−→xn = 0 by Lemma 3.2.7, and hocolim−−−−−→xn ∼= x by Theorem

3.2.10. Thus the triangle Σ−1x → hocolim−−−−−→xn → hocolim−−−−−→xn → x is trivially
exact.

Remark 3.2.13. A filtration analogous to that of Theorem 3.2.10, for the case
of well–generated triangulated categories may be found in [60, Lemma B 1.3].

For two projective classes (P,F) and (Q,G), we define the product by

P ∗ Q = add{x ∈ T |there is a triangle

q → x→ p→ Σq with p ∈ P, q ∈ Q},

and F ∗ G = {φψ | φ ∈ F, ψ ∈ G}. Generally by add we understand the
closure under finite coproducts and direct factors. Since in our case the closure
under arbitrary coproducts is automatically fulfilled, add means here simply the
closure under direct factors. Thus (P ∗ Q,F ∗ G) is a projective class, by [19,
Proposition 3.3].

If (Pi,Fi) for i ∈ I is a family of projective classes, then

(Add (
⋃
I Pi) ,

⋂
I Fi)

is also a projective class by [19, Proposition 3.1], called the meet of the above
family.
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In a straightforward manner we may use the octahedral axiom in order
to show that the product defined above is associative. We may also observe
without difficulties that the product of two (respectively the meet of a family
of) κ-perfect projective classes is also κ-perfect, where κ is an arbitrary regular
cardinal.

Consider now a projective class (P,F) in T . We define inductively P∗0 =
{0}, F∗0 = T → and P∗i = P ∗ P∗(i−1), F∗i = F ∗ F∗(i−1), for every non–limit
ordinal i > 0. If i is a limit ordinal then (P∗i,F∗i) is defined as the meet of all
(P∗j ,F∗j) with j < i. Therefore (P∗i,F∗i) is a projective class for every ordinal
i, which is called the i-th power of the projective class of (P,F) (see also [19],
for the case of ordinals less or equal to the first infinite ordinal). Clearly we
have P∗j ⊆ P∗i, for all ordinals j ≤ i.

Remark 3.2.14. We can inductively see that for x ∈ T it holds xn ∈ P∗n for all
n ∈ N, where xn is the n–th term of an F-cellular tower of x.

For example, if T is compactly generated, and T c denotes the subcategory
of all compact objects, then the projective class induced by T c is obviously
perfect, thus we obtain immediate consequence of Theorem 3.2.10:

Corollary 3.2.15. [6, Corollary 6.9] If T is compactly generated then any
object x ∈ T is the homotopy colimit hocolim−−−−−→xn of a tower x0 → x1 → · · · ,
where xn ∈ Add(T c)∗n, for all n ∈ N.

Consider a contravariant functor F : T → Ab. For a full subcategory C of T ,
we consider the comma category C/F with the objects being pairs of the form
(x, a), where x ∈ C and a ∈ F (x), and maps

(C/F )((x, a), (y, b)) = {α ∈ T (x, y) | F (α)(b) = a}.

Motivated by [61] it is interesting to find weak terminal objects in T /F , that is
objects (t, b) ∈ T /F , such that for every (x, a) ∈ T /F there is a map (x, a) →
(t, b) ∈ (T /F )→. Another equivalent formulation of this fact is that the natural
transformation T (−, t)→ F which corresponds under the Yoneda isomorphism
to b ∈ F (t) is an epimorphism. The statement a) of the following lemma is
proved by the same argument as [61, Lemma 2.3]. We include a sketch of the
proof for the convenience of the reader.

Lemma 3.2.16. Let F : T → Ab be a cohomological functor which sends
coproducts into products.

a) If (P,F) and (Q,G) are projective classes in T such that (P,F) is induced
by a set and Q/F has a weak terminal object, then (P ∗Q)/F has a weak
terminal object.

b) If (Pi,Fi), i ∈ I are projective classes in T with the meet (P,F), and Pi/F
has a weak terminal object for all i ∈ I then P/F has a weak terminal
object.
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Proof. a) Let (q, d) be a weak terminal object in Q/F , and let S be a set
which induces the projective class (P,F). Obviously P/F has a weak terminal
object (p, c). Consider an object (y, a) ∈ (P ∗ Q)/F . Thus there is a triangle
x → y → z → Σx, with x ∈ Q and z ∈ P. We have z q z′ =

∐
i∈I si for some

z′ ∈ T . We construct the commutative diagram in T whose rows are triangles:

x // y //

��

z //

��

Σx

x
α //

f

��

y q z′ //

g

��

∐
i∈I si

// Σx

��
q

β
// y1

// ∐
i∈I si γ

// Σq

We proceeded as follows: The triangle on the second row is obtained as the
coproduct of the initial one with 0 → z′ → z′ → 0, and the maps are the
canonical injections. For d′ = F (α)(a, 0) ∈ F (x), there is a map f : (x, d′) →
(q, d) ∈ (Q/F )→, since (q, d) is weak terminal. The first bottom square of
the diagram above is homotopy push–out (see [60, Definition 1.4.1 and Lemma
1.4.4]). Clearly y1 ∈ P ∗ Q. Since F is cohomological, there is a1 ∈ F (y1) such
that F (β)(a1) = d and F (g)(a1) = (a, 0). So if we find a map (y1, a1)→ (t, b) ∈
((P ∗ Q)/F )→ for a fixed object (t, b), then the conclusion follows.

If we denote by J ⊆
⋃
s∈S T (s,Σq) the set of all maps si →

∐
i∈I si → Σq,

then γ factors as
∐
i∈I si

∇−→
∐
s∈J s → Σq, where ∇ is a split epimorphism.

Hence the fibre of γ is isomorphic to yJ q z′′, for some z′′ ∈ P and yJ defined
as the fibre of the canonical map

∐
s∈J s → Σq. Therefore (y, a) maps to

(t, b) = (t′ q p, (b′, c)) where

(t′, b′) =

 ∐
J⊆

⋃
s∈S T (s,Σq)

 ∐
u∈F (yJ )

(yJ , u)

 ,

so the object (t, b) is weak terminal in (P ∗ Q)/F .
b) If (ti, ai) ∈ Pi/F is a weak terminal object, then (

∐
i∈I ti, (ai)i∈I) is a

weak terminal object in P/F .

By transfinite induction we obtain:

Lemma 3.2.17. Let (P,F) be a projective class in T which is induced by a set.
For every ordinal i and every cohomological functor F : T → Ab which sends
coproducts into products, the category P∗i/F has a weak terminal object.

Remark 3.2.18. For finite ordinals, Lemma 3.2.17 is the same as [61, Lemma
2.3]. Note also that Neeman defined the operation ∗ without to assume the
closure under direct summands, but for a subcategory C of T such that (t, b) is
weak terminal in C/F , the same object is weak terminal in add C/F too.
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3.3 Well–generation and deconstructibility

The following Proposition is a generalization of Lemma 3.1.2. Despite the fact
the idea is the same we sketch here this argument (in the dual form appropriate
to the present approach), because the hypotheses are dramatically modified.

Proposition 3.3.1. Let (P,F) be an ℵ1–perfectly generating projective class in
T , and let F : T → Ab be a cohomological functor which sends coproducts into
products. Suppose also that every category P∗n/F has a weak terminal object
(tn, bn), for n ∈ N. Then T /F has a weak terminal object.

Proof. Denote by I the set of all towers 0 = t0
τ0−→ t1

τ1−→ t2 → · · · , satisfying
F (τn)(bn+1) = bn, for all n ∈ N. The set I is not empty since for all n ∈ N,
we have tn ∈ P∗n ⊆ P∗(n+1) and (tn+1, bn+1) is weak terminal in P∗(n+1)/F .
Denote also by ti the homotopy colimits of the tower i ∈ I, and chose bi ∈ F (ti)
an element which maps into (bn)n∈N via the surjective (see the dual of Lemma
3.2.1) map F (ti)→ lim

n∈N
F (tn). We claim that

(t, b) =

(∐
i∈I

ti, (bi)i∈I

)
∈ T /F

is a weak terminal object.

In order to prove our claim, let x ∈ T . As we have seen in Theorem 3.2.10,
it is isomorphic to the the homotopy colimit of its F-cellular tower 0 = x0 α0−→
x1 α1−→ x2 → · · · , associated with a choice of an F-phantom tower. Thus
consider the commutative diagram, whose rows are exact by Lemma 3.2.1 and
whose vertical arrows are induced by the natural transformation corresponding
to b ∈ F (t) via the Yoneda isomorphism:

0 // lim(1) T (Σxn, t) //

��

T (x, t) //

��

lim T (xn, t) //

��

0

0 // lim(1) F (Σxn) // F (x) // limF (xn) // 0

If we would prove that the two extreme vertical arrows are surjective, then the
middle arrow enjoys the same property and our work would be done.

For n ∈ N, we know that Σxn ∈ P∗n and (tn, bn) is weak terminal in
P∗n, so there is a map (Σxn, an) → (tn, bn) ∈ (P∗n/F )→ for every element
an ∈ F (Σxn). Because I 6= ∅, there exists i ∈ I, hence we obtain a map

(Σxn, an)→ (tn, bn)→ (ti, bi)→ (t, b) ∈ (T /F )→

showing that the natural map T (Σxn, t)→ F (Σxn) is surjective. Therefore the
first vertical map in the commutative diagram above is surjective as we may see
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from the following commutative diagram with exact rows:

∏
T (Σxn, t)

1−shift//

��

∏
T (Σxn, t) //

��

lim(1) T (Σxn, t) //

��

0

∏
F (Σxn)

1−shift // ∏F (Σxn) // lim(1) F (Σxn) // 0

Let show now that the map lim T (xn, t) → limF (xn) is surjective too.
Consider an element (an) ∈ limF (xn), that is an ∈ F (xn) such that an =
F (αn)(an+1) for all n ∈ N. We want to construct a commutative diagram

x0 α0 //

f0

��

x1 α1 //

f1

��

x2 //

f2

��

· · ·

t0
τ0
// t1

τ1
// t2 // · · ·

such that the bottom row is a tower in I and F (fn)(bn) = an for all n ∈ N. We
proceed inductively as follows: f0 = 0 and f1 comes from the fact that (t1, b1)
is weak terminal in P/F . Suppose that the construction is done for the first n
steps. Further we construct a commutative diagram in T , where the rows are
triangles and the second square is homotopy push–out (see [60, Definition 1.4.1
and Lemma 1.4.4]):

pn // xn
αn //

fn

��

xn+1 //

��

Σpn

pn // tn // yn+1 // Σpn

By construction pn ∈ P, hence yn+1 ∈ P∗(n+1). On the other hand yn+1 is
obtained via the triangle

xn

 αn
−fn


−→ xn+1 q tn → yn+1 → Σxn,

therefore the sequence

F (yn+1)→ F (xn+1)× F (tn)
(F (αn),−F (fn))−→ F (xn)

is exact in Ab. Because F (αn)(an+1) − F (fn)(bn) = an − an = 0, we obtain
an element b′n+1 ∈ F (yn+1) which is sent to (an+1, bn) by the first map in the
exact sequence above. Thus the two maps constructed in the homotopy push-
out square above are actually maps (xn+1, an+1) → (yn+1, b′n+1) respectively

(tn, bn) → (yn+1, b′n+1) in P∗(n+1)/F . Since (tn+1, bn+1) is weak terminal in
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P∗(n+1)/F , they can be composed with a map (yn+1, b′n+1) → (tn+1, bn+1) ∈
(P∗(n+1)/F )→, in order to obtain a commutative square

xn
αn //

fn

��

xn+1

fn+1

��
tn

τn
// tn+1

as desired. Denote by i ∈ I the tower constructed above. We have a composed
map F (t) → F (ti) → limF (tn) → limF (xn) which sends b ∈ F (t) in turn into
bi, then into (bn)n∈N and finally into (an)n∈N. This shows that the element
(an)n∈N ∈ limF (xn) ⊆

∏
F (xn) lifts to an element lying in lim T (xn, t) along

the natural map
∏
T (xn, t)→

∏
F (xn) which corresponds to b via the Yoneda

isomorphism, and the proof of our claim is complete.

Proposition 3.3.2. Let T be a triangulated category with coproducts which
is ℵ1-perfectly generated by a projective class (P,F). Let F : T → Ab be a
functor wich sends coproducts inti products. If every category P∗n/F has a
weak terminal object, then F is representable.

Proof. The conclusion follows from dual of Theorem 2.2.3 corroborated with
Proposition 3.3.1.

We will say that T is ℵ1-perfectly generated by a set if it is ℵ1-perfectly
generated by a the projective class induced by that set, in the sense above.
Thus Proposition above together with Lemma 3.2.17 give:

Theorem 3.3.3. Let T be a triangulated category with coproducts which is
ℵ1-perfectly generated by a set. Then T is deconstructible and satisfies Brown
representability.

Remark 3.3.4. Our condition T to be ℵ1-perfectly generated by a set is obviously
equivalent to the hypothesis of [43, Theorem A].

Obviously every well–generated triangulated category in the sense of Neeman
[60] is ℵ1-perfectly generated by a set, in the sense above, as we may seen in
[42], hence we obtain:

Corollary 3.3.5. If T is a well–generated triangulated category then T is de-
constructible, therefore it satisfies Brown representability.



Chapter 4

Quasi-locally presentable
categories

This chapter is based on [50] and contains an axiomatization of some properties
satisfied by the abelianization of a well–generated triangulated categories. We
also show that this structure allows us to derive Brown representability at this
level from the general Freyd’s adjoint functor theorem.

4.1 Quasi-locally presentable abelian categories

Denote by R the class of all regular cardinals.
Consider a regular cardinal λ. A non–empty category S is called λ–filtered

if the following two conditions are satisfied:

F1. For every set {si | i ∈ I} of less that λ objects of S there are an object
s ∈ S and morphisms si → s in S, for all i ∈ I.

F2. For every set {σi : s→ t | i ∈ I} of less that λ morphisms in S, there is a
morphism τ : t→ u such that τσi = τσj , for all i, j ∈ I.

Let A be an object of a category A. Then the functor A(A,−) preserves the
colimit of a diagram S → A, s 7→ X(s) in A (indexed over a category S), if and
only if every map g : A→ colim−−−→s∈S

X(s) factors as

A

f

��

g

&&
X(u)

ξu

// colim−−−→s∈S
X(s)

through some of the canonical maps ξu with u ∈ S, and every such factorization
is essentially unique, in the sense that if f1, f2 : A→ X(u) with ξuf1 = g = ξuf2

41
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then there is σ : u → t a map in S such that X(σ)f1 = X(σ)f2. The object
A ∈ A is called λ–presentable if A(A,−) preserves all λ–filtered colimits. The
category A is called locally λ–presentable provided that it is cocomplete, and has
a set S of λ–presentable objects such that every X ∈ A is a λ–filtered colimit of
objects in S (see [1, Definition 1.17], but also [1, Remark 1.21])). Note that, if
A is locally λ–presentable, then the subcategory Aλ of all λ–presentable objects
in A is essentially small, and for every object A ∈ A, the category Aλ/A is
λ–filtered and

A ∼= colim−−−→(X,ξ)∈Aλ/A
X,

as we can see from [1, Proposition 1.22]. A category is called locally presentable
if it is locally λ–presentable for some regular cardinal λ.

Remark 4.1.1. Let A be a locally λ–presentable category. Observe than the
category Ao satisfies the hypotheses of Freyd’s special adjoint functor theorem:
it is well powered, complete and has a cogenerator (since the coproduct of all
λ-presentable objects is a generator for A). In particular, every contravariant
functor F : A → Ab which sends colimits into limits is representable. Indeed,
we can view F as a covariant functor Ao → Ab which must be representable,
having a left adjoint. Let us write F ∼= A(−, A), for some A ∈ A. Thus the
categories Aλ/A and Aλ/F are isomorphic, so

F ∼= A(−, colim−−−→(X,x)∈Aλ/F
X).

We consider a cocomplete category A which is a union

A =
⋃
λ∈R

Aλ,

of a chain of subcategories {Aλ | λ ∈ R} such that Aκ ⊆ Aλ for all κ ≤
λ and the subcategory Aλ locally λ–presentable and closed under colimits in
A, for any λ ∈ R. Denote by Iλ : Aλ → A the inclusion functor, which
preserves colimits by our assumption. Note that by Freyd’s special adjoint
functor theorem, the subcategory Aλ is coreflective, that is Iλ has a right adjoint
Rλ : A → Aλ. We call quasi-locally presentable a category A as above satisfying
the additional property that Rλ preserves colimits for all λ ∈ R. For such a
quasi-locally presentable category A and a regular cardinal λ we denote by Aλλ
the subcategory of all λ–presentable objects of Aλ, which has to be skeletally
small.

Lemma 4.1.2. In a quasi-locally presentable category A it holds Aκκ ⊆ Aλλ, for
every κ ≤ λ.

Proof. With the notations above, fix two cardinals κ ≤ λ. Observe that if we
denote Iκ,λ : Aκ → Aλ the inclusion functor, then it has a right adjoint namely
Rκ,λ = RκIλ. Since Rκ preserves colimits, Rκ,λ satisfies the same property.
Then for A ∈ Aκκ and for a λ-filtered (hence also κ-filtered) diagram (Xi)i∈I
in Aλ we have the following chain of isomorphisms, showing that Iκ,λ(A) is
λ-presentable:
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Aλ(Iκ,λ(A), colim−−−→Xi) ∼= Aκ(A,Rκ,λ(colim−−−→Xi)) ∼= Aκ(A, colim−−−→Rκ,λ(Xi))

∼= colim−−−→Aκ(A,Rκ,λ(Xi)) ∼= colim−−−→Aλ(Iκ,λ(A), Xi).

As a first example of quasi-locally presentable categories we mention first
the classical locally presentable ones. Clearly if A is locally κ–presentable for
some regular cardinal κ, then it is also quasi-locally presentable, with A = 0 for
all regular cardinals λ < κ and Aλ = A, for all λ ≥ κ.

Lemma 4.1.3. Let F : A → Ab be a contravariant functor which sends colimits
into limits, defined on a quasi-locally presentable, abelian category A. Then for
every regular cardinal κ, there is λ ∈ R, λ ≥ κ such that

FIκ ∼= colim−−−→(X,x)∈Aλλ/F
A(Iκ(−), X)

Proof. For any λ ∈ R, consider the coreflective locally λ–presentable subcate-
gory

Iλ : Aλ � A : Rλ

coming from the definition of a quasi-locally presentable category.
Fix κ ∈ R. For a skeleton C0 of Aκκ, denote C0 =

∐
(U,u)∈C0/F U . Let λ be a

regular cardinal such that

λ > κ+ card C0 +
∑
U∈C0

cardF (U) +
∑
U∈C0

cardA(U,C0) + ℵ1.

Since F : A → Ab sends colimits into limits, the same property is also true
for FIλ : Aλ → Ab. By Remark 4.1.1 we obtain FIλ ∼= Aλ(−, Fλ) for some
Fλ ∈ Aλ satisfying

Fλ = colim−−−→(X,x)∈Aλλ/F
X = colim−−−→(X,ξ)∈Aλλ/Fλ

X,

with the canonical maps γ(X,x) : X → Fλ. Note that γ(X,x) is the image of

(X,x) under the isomorphism of categories Aλλ/FIλ → Aλλ/Fλ. We have to
show that

F (A) ∼= colim−−−→(X,x)∈Aλλ/F
A (A,X) ,

for all A ∈ Aκ. Since A = Iκ(A) = Iλ(A) this means precisely that A(A,−)
preservers the colimit of the diagram Aλλ/F → A, (X,x) 7→ X. In order to
prove this, consider in the first step that A is a coproduct of objects in Aκκ.
Without losing the generality we may assume that A =

∐
i∈I Ui, for some

set I, and some Ui ∈ C0. Denote by ji : Ui → A, (i ∈ I) the canonical
injections. Let g : A → Fλ be a map in A. Since for all U ∈ C0 we have
U ∈ Aκ ⊆ Aλ, we may identify C0/F with C0/Fλ thus C0 =

∐
(U,υ)∈C0/Fλ U

with the canonical injections ε(U,υ) : U → C0. Since gji ∈ A(Ui, Fλ) we get a
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unique f : A→ C0, such that fji = ε(Ui,gji) from the universal property of the

coproduct. Put c0 = (υ)(U,υ)∈C0/Fλ . We know by Lemma 4.1.2 that Aκκ ⊆ Aλλ,

so the condition λ >
∑
U∈C0 cardF (U) assures us that (C0, c0) ∈ Aλλ/Fλ. It

follows (C0, c0) ∈ Aλλ/F . Moreover by construction γ(C0,c0)f = g, so g factors
through γ(C0,c0), where γ is the canonical transformation above.

It remains to show that this factorization is essentially unique. Consider
therefore two maps f1, f2 : A → C0 such that γ(C0,c0)f1 = g = γ(C0,c0)f2.
Denote N = {(U, h) | U ∈ C0, h ∈ A(U,C0) with γ(C0,c0)h = 0}, where C
is a skeleton of Aλλ, and put C1 =

∐
(U,h)∈N U with the canonical injections

k(U,h) : U → C1. By the choice of λ we have λ > cardA(U,C0) ≥ cardN , hence

(C1, 0) ∈ Aλλ/F . We may even consider (C1, 0) ∈ C/F . We have (Ui, (f1 −
f2)ji) ∈ N , hence there is a unique θ : A → C1 such that θji = k(Ui,(f1−f2)ji)

for all i ∈ I. Further there is a unique morphism η : C1 → C0 such that
ηk(U,h) = h for all (U, h) ∈ N . Clearly η is a map in Aλλ/F between (C1, 0) and

(C0, c0). If C is defined by the exactness of the sequence C1
η−→ C0

δ−→ C → 0,
then C ∈ Aλλ, because Aλλ is closed under cokernels (see [1, Proposition 1.16]).
Since F sends cokernels into kernels, we infer that there is c ∈ F (C) such that
F (δ)(c) = c0. Thus δ : (C0, c0)→ (C, c) lies in Aλλ/F , and δ(f1−f2) = δηθ = 0,
finishing the proof of the first step above.

Finally an arbitrary A ∈ Aκ is a colimit of objects in Aκκ, so it is a cokernel
of the form A1 → A0 → A→ 0 with A1 and A0 being coproducts of objects in
Aκκ. Using the first step before, we get easily

F (A) ∼= A(A,Fλ) ∼= colim−−−→(X,x)∈Aλλ/F
A(A,X)

canonically.

Remark 4.1.4. With the notations made in Lemma 4.1.3 and its proof, the
argument used to show the fact that A(A,Fλ) ∼= colim−−−→(X,x)∈Aλλ/F

A(A,X), for

A =
∐
i∈I Ui, with Ui ∈ Aκκ is inspired by [21, Lemma 2.11]. However, we

didn’t only change the settings, but we also improved the proof of Franke. A
simple translation of his argument in our settings would require the condition
cardA(U,X) ≤ λ for all U ∈ Aκκ and all X ∈ Aλλ. A priori is not clear
how we may choose such a regular cardinal λ. Instead of this, we required∑
U∈C0 cardA(U,C0) < λ, where the left hand side of this inequality doesn’t

depend of λ.

Recall that we call cofinal a subcategory S of a category C satisfying the
following two properties: For every c ∈ C there is a map c → s in C for some
s ∈ S; and for any two maps c → s1 and c → s2 in C, with s1, s2 ∈ S there
are s ∈ S and two maps s1 → s and s2 → s in S such that the composed
morphisms c → s1 → s and c → s2 → s are equal. It is well–known that if S
is a cofinal subcategory of C, then colimits over C and colimits over S coincide
(see [1, 0.11]).



4.1. QUASI-LOCALLY PRESENTABLE ABELIAN CATEGORIES 45

Lemma 4.1.5. Let A be an abelian category, and let F : A → Ab be a con-
travariant, exact functor. Let C ⊆ A be a subcategory closed under finite co-
products and cokernels. If S is a subcategory of C closed under finite coproducts
and satisfying the property that every X ∈ C admits an embedding 0→ X → S
into an object in S, then S/F is a cofinal subcategory of C/F .

Proof. Let (X,x) ∈ C/F . Consider an embedding 0 → X
α→ S, with S ∈ S.

Thus F (S)
F (α)−→ F (X) → 0 is exact, showing that there exists y ∈ F (S) with

F (α)(y) = x. Therefore α is a map in C/F between (X,x) and (S, y).
Now we claim that if α : X1 → X2 is a map in C, and x2 ∈ F (X2) is

an element with the property F (α)(x2) = 0, then there is a morphism γ ∈
C/F ((X2, x2), (S, y)) into an object (S, y) ∈ S/F such that γα = 0. Indeed

consider X being defined by exact sequence X1
α→ X2

β→ X → 0. Since the

sequence of abelian groups 0→ F (X)
F (β)→ F (X2)

F (α)→ F (X1) is also exact and
F (α)(x2) = 0, we obtain an element x ∈ F (X) such that F (β)(x) = x2. For
obtaining the required γ, compose β with a morphism in C/F from (X,x) into
an object (S, y), which is constructed as in the first part of this proof.

Finally for two morphisms

α1 ∈ C/F ((X,x), (S1, y1)) and α2 ∈ C/F ((X,x), (S2, y2)),

denote by ρ1 and ρ2 the respective injections of the coproduct S1 q S2. Then
F (ρ1α1 − ρ2α2)(y1, y2) = x − x = 0, so our claim for α = ρ1α1 − ρ2α2 gives
a morphism (S1 q S2, (y1, y2)) → (S, y) in C/F , with S ∈ S, such that the
composed morphisms X → S1 → S1qS2 → S and X → S2 → S2qS2 → S are
equal.

Let κ ∈ R. As usually, a κ–(co)product means a (co)product of less that κ
objects. We say that a quasi-locally presentable abelian category A is weakly
κ–generated if A coincide with its smallest full subcategory containing Aκ and
being closed under kernels, cokernels, extensions and κ–coproducts. We also
need the following notation:

InjλA = {S ∈ A | S is injective and S ∈ Aλλ}.

Theorem 4.1.6. Let A be a quasi-locally presentable, abelian category which
is weakly κ–generated, for some regular cardinal κ. Suppose also that, for any
regular cardinal λ ≥ κ, every X ∈ Aλλ admits an embedding 0 → X → S
into an object S ∈ InjλA. Then every exact, contravariant functor F : A → Ab
which sends coproducts into products is representable (necessarily by an injective
object).

Proof. Fix a contravariant exact functor F : A → Ab, which sends coproducts
into products. Consider the obvious natural transformation

φ : colim−−−→(X,x)∈Aλλ/F
A(−, X)→ F.
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Since F sends colimits into limits, Lemma 4.1.3 applies and tells us that there
is λ ∈ R, λ ≥ κ such that φ restricts to an isomorphism:

colim−−−→(X,x)∈Aλλ/F
A(Iκ(−), X) ∼= FIκ.

We know that Aλλ/F is λ–filtered (see [26, Korollar 5.4]), hence colimits of
abelian groups indexed over this category are exact and commute with products
of less that λ objects (see [26, Satz 5.2]). Since every X ∈ Aλλ admits an
embedding in an object S ∈ InjλA, we deduce by Lemma 4.1.5 that InjλA/F is
a cofinal subcategory of Aλλ/F , so

colim−−−→(X,x)∈Aλλ/F
A(−, X) ∼= colim−−−→(S,s)∈InjλA/F

A(−, S)

is an exact functor. We infer that the full subcategory of A consisting of all
objects A for which φA is an isomorphism contains Aκ and is closed under
kernels, cokernels, extensions and κ-coproducts (since λ ≥ κ). Therefore it is
equal to A forced by the hypothesis of weak κ–generation. This means that
φ is a natural isomorphism, hence a skeleton of Aλλ forms a solution set for
F . We conclude that F is representable by the general Freyd’s adjoint functor
theorem.

Example 4.1.7. The following example shows that the conclusion of Theorem
4.1.6 requires a kind of weak generation.

Recall that an abelian category is called locally Grothendieck if every set of
objects may be included in subcategory which is Grothendieck (see [76]). Let
K be a field. The category A =

⋃
λ∈R Mod(Kλ) considered in [76] is locally

Grothendieck. Note that there it is shown that the category
⋃
λ∈R Mod(Kλ) is

example of a category of λ-pure global dimension greater that 1, for all λ ∈ R;
this fact is related to Brown representability. Here by Mod(Kλ) we denote
the category of right modules over the ring Kλ. The category A is also quasi-
locally presentable. Indeed it is a a big union of a chain of Grothendieck (hence
locally presentable) subcategories Aλ = Mod(Kλ). For all κ ≤ λ in R we
have Kκ = Kλe, where e = e(κ, λ) ∈ Kλ is a central idempotent defined by
eγ = 1 for γ ≤ κ and 0 otherwise. Thus Kκ is a direct summand of Kλ,
and all X ∈ Mod(Kλ) decomposes as X = Xe ⊕ X(1 − e). Moreover for
X,Y ∈ Mod(Kλ) there is no nonzero homomorphisms between Xe and Y (1−e),
hence we have

HomKλ(X,Y ) = HomKκ(Xe, Y e)⊕HomKλ(1−e)(X(1− e), Y (1− e)).

Thus we can see Mod(Kκ) as a full split subcategory of Mod(Kλ). We deduce
that for every fixed κ ∈ R and for every X ∈ A, there is λ ≥ κ such that
X ∈ Mod(Kλ). The assignment X 7→ Xe, where e = e(κ, λ) induces a well
defined functor Rκ : A → Mod(Kκ) which is both the left and the right adjoint
of the inclusion functor Iκ; this follows by the fact that Mod(Kκ) is a full split
subcategory of Mod(Kλ). Thus both the inclusion functor Mod(Kκ) and its
right adjoint preserve colimits.
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Then we can construct a non-representable exact contravariant functor F :
A → Ab, which sends coproducts into products (the same idea will be used in
the future in the proof of Proposition 5.1.2). For every λ ∈ R, denote by λ+ the

successor of λ and consider Qλ+ to be an injective cogenerator of Mod(Kλ+

).

The Kλ+

-module Yλ = Qλ+(1− e), where e = e(λ, λ+), is injective and satisfies
HomKλ+ (X,Yλ) = 0 for all X ∈ Mod(Kλ). The contravariant functor

F : A → Ab, F (X) =
∏
λ∈R

A(X,Yλ)

is well defined. In fact, for X ∈ Mod(Kκ), we have A(X,Yλ) = 0 if λ ≥ κ,
hence F (X) =

∏
λ<κA(X,Yλ). Obviously F is exact and sends coproducts into

products. But F is not representable, since the strict inclusion of Mod(Kλ) into

Mod(Kλ+

) implies that the cogenerator Qλ+ must contain a nonzero part Yλ in

Mod(Kλ+

(1− e)). The representability of F would means the existence of the
product Y =

∏
λ∈R Yλ in A. But this is absurd since Y would have a proper

class of endomorphisms, and such objects don’t exist in A.

On the other hand we have:

Proposition 4.1.8. Consider the above locally Grothendieck category

A =
⋃
λ∈R

Mod(Kλ).

A contravariant functor F : A → Ab is representable if and only if it sends
colimits into limits and there is κ ∈ R such that F ∼= FIκRκ.

Proof. If F ∼= A(−, Y ) for some Y ∈ A then there is κ ∈ R such that Y ∈
Mod(Kκ). Thus for every X ∈ A, there is λ ≥ κ such that X ∈ Mod(Kλ),
hence F (X) = A(X,Y ) ∼= A(Xe, Y ) ∼= FIκRκ(X).

Conversely if F sends colimits into limits then, as in the proof of Lemma
4.1.3, we obtain FIκ ∼= HomKκ(−, Y ), for some Y ∈ Mod(Kκ). Combining this
with F ∼= FIκRκ we deduce:

F ∼= HomKκ(Rκ(−), Y ) ∼= A(−, Iκ(Y )),

therefore F is representable.

Example 4.1.9. In Theorem 4.1.6 the exactness of the functor F : A → Ab
(which sends coproducts into products) is an essential hypothesis. More pre-
cisely, the weaker requirement that F sends colimits into limits is not suffi-
cient to conclude that it is representable. For showing this, suppose that the
quasi-locally presentable category A from the Theorem 4.1.6 is abelian (as in
the motivating case of the next Section) but is not locally presentable, that is
A 6= Aλ for every λ ∈ R. The fact that A is weakly generated which is used in
combination with the exactness of F doesn’t play any role in this example. The
exactness of Rλ implies that Aλ is equivalent to quotient category of A modulo
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the Serre subcategory KerRλ = {X ∈ A | Rλ(X) = 0}. But Rλ is not an
equivalence, forcing KerRλ 6= 0. Consider 0 6= Xλ ∈ A such that Rλ(Xλ) = 0,
for every λ ∈ R. Strictly speaking we need here a version of axiom of choice
which works for proper classes. As in Example 4.1.7, we infer that the functor

F =
∏
λ∈R

A(−, Xλ)

is well defined since for every X ∈ A we have X ∈ Aκ for some κ ∈ R, so
A(X,Xλ) = 0 for all λ ≥ κ. It is easy to see that this functor does the job we
claim.

4.2 The abelianization of a well generated trian-
gulated category is quasi-locally presentable

A category C is called λ–cocomplete if C has λ–coproducts (that is, coproducts
of fewer than λ objects) and cokernels. It is easy to see that C is λ–cocomplete
if and only if it contains all colimits of diagrams with less that λ morphisms.
A C-module over a λ–cocomplete category is called λ–left exact if it is left
exact and sends λ–coproducts into products. Provided that the category C
is essentially small, the class HomC(X,Y ) is actually a set for all C-modules
X,Y . Thus we are allowed to consider the category Mod(C) of all C-modules.
If C is also λ–cocomplete, then denote by Lexλ(Co,Ab) the full subcategory
of Mod(C) consisting of λ–left exact modules. We know that Lexλ(Co,Ab) is
a locally λ–presentable category, and the embedding C → Lexλ(Co,Ab) given
by X 7→ C(−, X) identifies C, up to isomorphism, with the subcategory of λ–
presentable objects in Lexλ(Co,Ab) (see [26, Korollar 7.9]).

As before, let λ denote a regular cardinal. If S is an preadditive, essentially
small category with λ–coproducts, denote by Exλ(So,Ab) the full subcategory
of Mod(S), consisting of those modules which preserve λ–products. Clearly a
finitely presentable S-module, that is an element in mod(S), preserves arbitrary
products, hence it belongs to Exλ(So,Ab).

Lemma 4.2.1. For a regular cardinal λ, consider an additive, essentially small
category S having λ–coproducts. Then Exλ(So,Ab) is a locally λ–presentable

category, and the embedding mod(S)
⊆−→ Exλ(So,Ab) identifies mod(S) with

the full subcategory of Exλ(So,Ab) consisting of all λ–presentable objects.

Proof. The category mod(S) has obviously λ–coproducts and cokernels, so it
is λ–cocomplete. According to [44, Lemma B.1], there is an equivalence of
categories

Lexλ(mod(S)o,Ab)→ Exλ(So,Ab), X 7→ XHS ,

where HS : S → mod(S) denotes the Yoneda functor. Thus Exλ(So,Ab) is
locally λ–presentable. Further, the identification of λ–presentable objects in
Exλ(So,Ab) follows by discussion above concerning λ–presentable objects in
Lexλ(Co,Ab).
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Suppose now that T is well κ–generated triangulated category, having a
perfectly generating set S consisting of κ-small objects (see Definition 1.3.4).
Consider the subcategory T λ of all λ–compact objects. Clearly T λ is skeletally
small and has λ-coproducts. Denote modλ(T ) = Exλ((T λ)o,Ab), for λ ≥ κ and
modλ(T ) = 0 otherwise. We know by [60, Proposition A.1.8] that modλ(T ) is
locally λ–presentable, and the functor by [60, Proposition 6.5.3] that it may be
identified to a coreflective subcategory of mod(T ) via the fully faithful functor
Iλ : modλ(T ) → mod(T ) which is the left adjoint of the restriction functor
Rλ : mod(T )→ modλ(T ).

Proposition 4.2.2. Fix a regular cardinal κ > ℵ0. Provided that T is a com-
pactly κ–generated triangulated category, then mod(T ) is a quasi-locally pre-
sentable abelian category which is weakly κ–generated.

Proof. Denote by A the smallest subcategory of mod(T ) which is closed under
kernels, cokernels, extensions, countable coproducts and contains modκ-T . Let
us show that mod(T ) = A. Observe first that if T → U → X → Y → Z is
an exact sequence with T,U, Y, Z ∈ A then we can construct the commutative
diagram with exact rows and column

0

��
T // U // X ′ //

��

0

T // U // X //

��

Y // Z

0 // X ′′ //

��

Y // Z

0

showing that X ∈ A. Therefore if x → y → z → Σx is a triangle in T with
H(x), H(z) ∈ A then H(y) ∈ A. It is shown in Theorem 3.2.10 that every
object x ∈ T is isomorphic to a homotopy colimit of a tower x0 → x1 → · · ·
such that x0 = 0 and for every n ∈ N we have a triangle pn → xn → xn+1  
with pn being a coproduct of objects in T κ. Inductively H(xn) ∈ A, for all
n ∈ N, hence H(

∐
n∈N x

n) ∼=
∐
n∈NH(xn) ∈ A, and finally H(x) ∈ A. Now, for

every X ∈ mod(T ) there is an exact sequence H(y) → H(x) → X → 0, with
x, y ∈ T , thus X ∈ A.

Note that we have already shown that T coincides with its smallest ℵ1-
localizing subcategory which contains a skeleton of T κ. Therefore the proof of
[60, Proposition 8.4.2] (more precisely [60, 8.4.2.3]) works for our case, hence
T =

⋃
λ≥κ T λ, and further mod(T ) =

⋃
λ∈R modλ(T ). In addition an immedi-

ate consequence of Lemma [60, 6.5.1] is that the right adjoint of the inclusion
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functor modλ(T ) → mod(T ) preserves colimits, and all conditions from the
definition of a weakly κ-generated quasi-locally presentable category are ful-
filled.

Theorem 4.2.3. If T is a well–generated triangulated category, then every
functor F : mod(T ) → Ab which is contravariant, exact and sends coproducts
into products is representable.

Proof. Without losing the generality we may assume that T is well κ–generated,
for some κ ≥ ℵ1 (if not, we replace κ by ℵ1). By Proposition 4.2.2, mod(T ) is a
weakly κ–generated quasi-locally presentable category. In order to apply Theo-
rem 4.1.6 we have only to show that every λ–presentable object X of modλ(T )
admits an embedding into an object in S ∈ modλ(T ) which is λ–presentable in
modλ(T ) and injective in mod(T ). But this follows immediately from Lemma
4.2.1, since, according to [60, Corollary 5.1.23], every X ∈ mod(T λ) admits an
embedding into an object of the form H(x) with x ∈ T λ.

Note that the category mod(T ) is usually “huge”, in the sense that it is
not well (co)powered, as we learned on [60, Appendix C]. Thus Proposition
4.2.2 and Theorem 4.2.3 provide an example of such a huge category which is
quasi-locally presentable and for which representability Theorem 4.1.6 applies.

Combining Theorems 4.2.3 and 2.1.1 we obtain (once again) a new proof for:

Corollary 4.2.4. Every well–generated triangulated categories satisfies Brown
representability.



Chapter 5

Homotopy category of
complexes

In this chapter we characterize abelian categories A for which K(A) and/or
K(A)o satisfy Brown representability. The results were first published in [56]
and [51].

5.1 Homtopy categories satisfying Brown repre-
sentability

The category T is called locally well–generated (in the sense of [74, Definition
3.1]) if for any set S (not a proper class!) of objects of T , Loc(S) is well–
generated.

Let T be a triangulated category and denote by R the (proper) class of all
infinite regular cardinal numbers. In what follows we often need an increasing
chain

Sℵ0 ⊆ Sℵ1 ⊆ Sℵ2 ⊆ · · · ⊆ Sκ ⊆ . . .
of skeletally small triangulated subcategories of T indexed by R such that the
union

⋃
κ∈R Sκ is the whole of T .

Remark 5.1.1. Strictly speaking, it is not clear how to obtain such a chain in
general using the axioms of ZFC alone. But there are two workarounds. First,
if we work with a more concrete triangulated category, it may be possible to
construct the chain directly. For example, if T = K(Mod(R)), then Sκ can
be defined as the subcategory of all complexes formed by κ–presented modules.
Second, if we insist on general T , we can adopt some suitable axiomatization
of set theory which allows us to well-order the universe of all sets (eg. the
von Neumann–Bernays–Gödel set theory). Then we can easily construct the
chain using the induced well-ordering of objects of T . The same applies to the
proof of Proposition 5.1.2 below, where we strictly speaking use the Axiom of
Choice for proper classes.

51
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Now we can formulate a simple but important obstruction to Brown repre-
sentability.

Proposition 5.1.2. Let T be a triangulated category with coproducts. Suppose
that T possesses an increasing chain (Sκ | κ ∈ R) of skeletally small triangulated
subcategories such that T =

⋃
κ∈R Sκ and S⊥κ 6= 0 for all κ ∈ R. Then T does

not satisfy Brown representability.
Dually, suppose T is triangulated, has products and has an increasing chain

{Sκ | κ ∈ R} of skeletally small triangulated subcategories such that T =⋃
κ∈R Sκ and ⊥Sκ 6= 0 for all κ ∈ R. Then T o does not satisfy Brown rep-

resentability.

Proof. We prove only the first part, the other is dual. Choose for each κ ∈ R
an object 0 6= Yκ ∈ S⊥κ . We consider the functor

F =
∏
κ∈R

T (−, Yκ) : T −→ Ab.

Note that F is a well-defined functor. Indeed, recall that any X ∈ T is contained
in Sκ for some κ ∈ R, so T (X,Yλ) = 0 for all λ ≥ κ and the product defining
FX is essentially set-indexed. Moreover, F is homological and sends coproducts
to products.

Now we are essentially done, since if F were represented by some object in
T , it would have to be the product of {Yκ | κ ∈ R} in T , which cannot exist.
To give a formal argument, assume for the moment that there is some Y ∈ T
and a natural equivalence

η : T (−, Y ) −→ F.

For each κ ∈ R we then have an idempotent natural transformation εκ : F → F
given as the composition

F −→ T (−, Yκ) −→ F

which, by the Yoneda lemma, induces an idempotent morphism eκ : Y → Y
in T . Since (εκ | κ ∈ R) is a proper class of pairwise orthogonal non-zero
idempotent endotransformations of F , the collection {eκ | κ ∈ R} would have
to be a proper class of endomorphisms of Y with the same properties. This is
absurd since T (Y, Y ) is a set.

Now we are ready to give a proof of Theorem 5.1.3. For a more concrete
construction of a non-representable functor K(Ab) → Ab, see Example 5.2.8
below.

Theorem 5.1.3. Let T be a locally well–generated triangulated category. Then
T satisfies Brown representability if and only if T is well–generated. In partic-
ular, if R is a ring which is not right pure semisimple, for instance R = Z, then
K(Mod(R)) does not satisfy Brown representability.
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Proof. If T is well–generated, or equivalently T = Loc(S) for some set S, then
Brown representability holds by [60, Proposition 8.4.2]. Let us, therefore, as-
sume that T is not well–generated.

As discussed above, we have an increasing chain {Sκ | κ ∈ R} of skeletally
small triangulated subcategories of T such that T =

⋃
κ∈R Sκ. Let us put

Lκ = Loc(Sκ); by definition each Lκ is well generated and our assumption
ensures Lκ $ T . It follows from [60, 9.1.13 and 9.1.19] that each X ∈ T admits
a triangle

ΓκX −→ X −→ LκX −→ ΓκΣX (∗)

with ΓκX ∈ Lκ and LκX ∈ S⊥κ . So given arbitrary X ∈ T \ Lκ it follows
0 6= LκX ∈ S⊥κ . Now we just apply Proposition 5.1.2.

Finally, the second part of the theorem follows from [74, 2.6 and 3.5]: If R is
a ring which is not right pure semi-simple, K(Mod(R)) is locally well generated
but not well generated.

5.2 Brown representability for the dual of a ho-
motopy category

Fix the additive category A. In this section we discuss Brown representability
for K(A)o. For an object G ∈ A we denote by Prod(G) respectively Add(G) the
full subcategory consisting of direct factors (or equivalently, direct summands) of
a product (respectively coproduct) of copies of G (assuming that the requested
products or coproducts exist).

Definition 5.2.1. We say that A has a product generator if there is an object
G ∈ A such that A = Prod(G). For the dual situation when A = Add(G) we
use the more standard terminology A is pure semisimple (see [73, Definition 2.1
and Proposition 2.2]).

Based on [57, Definition 2.24], we introduce the following concept:

Definition 5.2.2. Let A be an additive category and X a full subcategory.
Given M ∈ A, by an augmented proper right X -resolution we understand a
complex of the form

XM : . . . −→ 0 −→ 0 −→M −→ X0 −→ X1 −→ X2 −→ · · · ,

such that Xi ∈ X for all i ≥ 0 and HomK(A)(XM , X
′[n]) = 0 for all X ′ ∈ X

and n ∈ Z.

A favorable fact is that such resolutions often do exist.

Lemma 5.2.3. Let A be an additive category with products and splitting idem-
potents, let X ∈ A and put X = Prod(X). Then any M ∈ A admits an
augmented proper right X -resolution XM ∈ K(A). Moreover, XM = 0 in K(A)
if and only if M ∈ X .
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Remark 5.2.4. The lemma is true also without A having splitting idempotents,
but we keep the assumption for the sake of simplicity.

Proof. We will construct the terms Xi of an augmented resolution

XM : . . . −→ 0 −→ 0 −→M
d−1

−→ X0 d0−→ X1 d1−→ X2 d2−→ · · ·

by induction on i. We put X0 = XHomA(M,X) and take for d−1 the obvious
morphism. Having constructed Xi for i ≥ 0, we set

Zi = {f ∈ HomA(Xi, X) | f ◦ di−1 = 0},

Then we can take Xi+1 = XZi and construct di : Xi → Xi+1 in the obvious
way.

For the second part, assume that XM = 0 in K(A), so it is a contractible
complex. In particular, d−1 : M → X0 splits, so M ∈ Prod(X) = X . The other
implication is easy.

Now we show a consequence of non-existence of a product generator for A,
which is important in connection with Proposition 5.1.2.

Proposition 5.2.5. Let A be an additive category with products and splitting
idempotents. If A does not have a product generator, then ⊥S 6= 0 in K(A) for
every set (not a proper class!) S ⊆ K(A).

Proof. Suppose A has no product generator and S ⊆ K(A) is a set of complexes.
Let U ⊆ A be the set of all objects occurring in the components of complexes
in S, and let X = Prod(U). Then clearly S ⊆ K(X ), so it suffices to show that
⊥K(X ) 6= 0 in K(A).

To this end, we have X $ A since A has no product generator. Thus, we
can take an object M ∈ A\X and construct, using Lemma 5.2.3, an augmented
proper right X–resolution XM of M such that XM 6= 0 in K(A). We would like
to see thatXM ∈ ⊥K(X ), but this has been proved by Murfet in [57, Proposition
2.27] (using crucially the fact that XM is a complex which is bounded below).

Theorem 5.2.6. Let A be an additive category with products. If K(A)o satisfies
Brown representability, then A has a product generator. In particular K(Ab)o
does not satisfy Brown representability.

Proof. First of all, we may without loss of generality assume that A has splitting
idempotents. If not, we replace A by its idempotent completion Ã (see e.g. [4,
§1]). Since K(A) has splitting idempotents by [60, Proposition 1.6.8 and Remark
1.6.9], it follows that the inclusion K(A) ⊆ K(Ã) is a triangle equivalence.

Next we suppose that A has no product generator and prove the existence
of a non-representable homological product-preserving functor F : K(A)→ Ab.
Namely, we choose an increasing chain

Sℵ0 ⊆ Sℵ1 ⊆ Sℵ2 ⊆ · · · ⊆ Sκ ⊆ . . .
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of skeletally small triangulated subcategories of K(A) indexed by R such that
the union

⋃
κ∈R Sκ is the whole of K(A) (cf. Remark 5.1.1). Then, however,

Proposition 5.2.5 ensures that ⊥Sκ 6= 0 in K(A) for each κ ∈ R, and so we
are in the situation of Proposition 5.1.2, which asserts the existence of such a
functor.

Finally, we must prove that Ab has no product generator. For this purpose,
let us fix a prime number p ∈ N. Using the notation from [25, §XI.65], we define
inductively for every abelian group G and every ordinal σ:

pσG =


G, if σ = 0

p(pσ−1G), if σ is non limit.⋂
ρ<σ

pρG, if σ is limit.

The p-length l(G) of the group G is then by definition the minimum ordinal λ
such that pλ+1G = pλG. Note that for any family (Gi | i ∈ I) of abelian groups,
we have the formula

l
(∏

Gi
)

= sup
{
l(Gi) | i ∈ I

}
.

Thus, to prove that Ab has no product generator, it suffices to construct abelian
groups of arbitrary length. However, such families of groups are known. For
instance Walker’s groups Pβ [78] (whose construction can also be found in [60,
Construction C.2.1]) or generalized Prüfer groups [25, pp. 85–86].

Remark 5.2.7. The non-existence of a product generator for Mod(R) seems to be
a much more widespread phenomenon. If X ∈ Mod(R) is a product generator,
then Ext1

R(M,X) = 0 implies that M is projective for each M ∈ Mod(R). That
is, X is a projective test module in the sense of [20, p. 408]. If R is not right
perfect it is, however, consistent with ZFC + GCH that there are no projective
test modules and in particular no product generators.

We conclude the section with more concrete examples of non-representable
(co)homological functors K(Ab)→ Ab.
Example 5.2.8. Let us for each κ ∈ R denote by Aκ the full subcategory of Ab
formed by all groups of cardinality smaller than κ, and put T = K(Ab).

If we take for a given κ a group Pκ of length κ + 1 (e.g. Walker’s group
Pκ from [78]), then clearly Pκ 6∈ Prod(Aκ), since the length of any group from
Prod(Aκ) is at most κ. Thus, recalling the arguments above, we see that the
augmented proper right Prod(Aκ)–resolution of Pκ, which we denote by Yκ, is
nonzero in K(Ab) and belongs to ⊥K(Prod(Aκ)). In particular, the functor

F =
∏
κ∈R

T (Yκ,−) : T −→ Ab,

is a well-defined homological functor which sends products in T to products of
abelian groups, but it is not representable by an object of T .
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Let us also explicitly construct a contravariant non-representable functor. In
fact, we will use the formally dual statement to Theorem 5.2.6 and its proof for
this rather than Theorem 5.1.3. The key point is [17, Theorem 3.1] by Chase,
which implies that for any uncountable κ ∈ R, we have Zκ 6∈ Add(Aκ). Here,
Add(Aκ) denotes as usual the closure of Aκ in Ab under taking direct sums and
summands. Therefore, denoting by Y ′κ the augmented proper left Add(Aκ)–
resolution of Zκ (with the obvious meaning), we can infer exactly as before that
the functor

F ′ =
∏
κ∈R

T (−, Y ′κ) : T −→ Ab,

is a well-defined cohomological functor which sends coproducts in T to products
of abelian groups, but it is not representable by an object of T .

Lemma 5.2.9. Let A be an additive category with split idempotents and prod-
ucts, which possesses a product generator G. Denote S = {ΣnG | n ∈ Z} the
closure of G under suspensions and desuspensions in K(A).

a) If given two composable maps X → Y → Z whose composition is 0 in A,
then X → Y factors through a subobject Y ′ ≤ Y such that the composed
map Y ′ → Y → Z vanishes, then K(A) is S-cofiltered.

b) If A has images or kernels, then K(A) is S-cofiltered.

Proof. a) We will show inductively that a bounded complex with less than n+1
non–zero entries is in Prodn(S), where n runs over all positive integers. This
is clear for n = 0, since G is a product generator of A. Now we suppose the
property true for any complex with ≤ n non–zero entries. Let

· · · → 0→ X0 → · · · → Xn → 0→ · · ·

be a bounded complex. The diagram

· · · // 0 //

��

0 //

��

· · · // 0 //

��

Xn //

=

��

0 //

��

· · ·

· · · // 0 //

��

X0 //

=

��

· · · // Xn−1 //

=

��

Xn

��

// 0 //

��

· · ·

· · · // 0 // X0
// · · · // Xn−1 // 0 // 0 // · · ·

is an exact sequence of complexes which splits in each degree. According to [35,
Example 6.1] it leads to a triangle proving the induction step.

Finally consider an infinite complex

X = · · · −→ Xn−1 dn−1

−→ Xn dn−→ Xn+1 −→ · · · .

By hypothesis, the map dn−1 factors through a subobject Y n ≤ Xn, such that

Y n −→ Xn dn−→ Xn+1 vanishes, for all n ∈ Z. For all i ∈ N, consider the
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bounded complex

X(i) = · · · → 0→ Y −i → X−i → X−i+1 → · · · → Xi−1 −→ Xi → 0→ · · · ,

and the map of complexes ε(i) : X(i+ 1)→ X(i) as in the following diagram:

· · · // 0 // Y −i // X−i // · · ·

oo

· · · // Y −i−1 //

99

X−i−1 //

::

X−i // · · ·

oo· · · Xi+1oo

$$

Xioo

· · · 0oo Xioo

As in [34, Lemma 2.6] we infer that X is isomorphic in K(A) to the homotopy
limit of a the chain of bounded complexes

· · · −→ X(2)
ε(1)−→ X(1)

ε(0)−→ X(0),

thus X is S-cofiltered.
b) We apply a) with Y n = im dn−1 or Y n = ker dn, for all n ∈ Z.

Theorem 5.2.10. Let A be an additive category with products and split idem-
potents, possessing also images or kernels. Then K(A)o satisfies Brown repre-
sentability if and only if A has a product generator. In particular, if R is a ring
then K(Mod(R))o satisfies Brown representability if and only if Mod(R) has a
product generator.

Proof. The direct implication is Theorem 5.2.6, whereas the converse follows by
Lemma 5.2.9 b) and Theorem 3.1.3. Finally note that the category Mod(R) is
additive with products and has both images and kernels.

Remark 5.2.11. If the ring R is pure semisimple, then Mod(R) = Add(G) for
some G ∈ Mod(R) (in fact G is the direct sum of a family of representatives of
all isomorphism classes of finitely presentable modules). In this case, Add(G) is
closed under products, so G is product–complete hence Add(G) = Prod(G) (see
[41, Theorem 6.7]). Consequently K(Mod(R))o satisfies Brown representability,
by Theorem above. This was already known since Mod(R) is a pure semisimple
finitely presentable category which is closed under products, so it is compactly
generated by [73, Theorem 5.2]. It would be therefore interesting to character-
ize the class of rings R for which the module category Mod(R) has a product
generator. If we could indicate a non pure semisimple ring belonging to this
class, then we would produce an example of a triangulated category with prod-
ucts and coproducts, namely K = K(Mod(R)) such that Ko satisfies Brown
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representability, but K don’t. To the best of our knowledge, such an example
is yet unknown. Note that, according to [8], pure semisimplicity condition is
equivalent to the existence of a product generator, provided that we assume
some extra set theoretical axiomes. This suggests that the equivalence between
Brown representability for K(Mod(R)) and for K(Mod(R))o is not decidable in
ZFC.

Remark 5.2.12. There is an isomorphism of categories K(A)o
∼−→ K(Ao), which

is easy to establish (for example, this is written down in [47, Theorem 2.1.1]).
Applying this isomorphism of categories, we may dualize all results in this sec-
tion. Thus we may conclude that if A is an additive category with split idempo-
tents and coproducts, possessing also images or cokernels, then K(A) satisfies
Brown representability theorem if and only if A is pure semisimple. Note that
this statement is already known for A = Mod(R), or more generally for a finitely
accessible category with coproducts A, as we may see by a combination between
[56, Theorem 1] and [73, Proposition 2.6]. However the results in [56] and [73]
may not be dualized in order to obtain Theorem 5.2.10 back, since the argument
used there for showing that K(A) satisfies Brown representability, where A is
a pure semisimple, finitely accessible additive category with coproducts goes as
follows: If A enjoys all these properties, then K(A) is well generated by [73,
Theorm 5.2], therefore it satisfies Brown representability by [60, Theorem 8.3.3
and proposition 8.4.2]. But none of the notions “finitely accessible category”
and “well generated triangulated category” is self–dual.

Remark 5.2.13. Let R be a ring with gl.dimR ≤ 1. Then the category Inj(R) of
all injective modules is additive, closed under products, idempotents and images
and every injective cogenerator of Mod(R) is a product generator for Inj(R).
Thus Theorem 5.2.10 gives another proof for the fact that K(Inj(R))o satisfies
Brown representability. This fact is already known since K(Inj(R)) is equivalent
to the derived category which is compactly generated.

5.3 Functors without adjoints

Given a ring R, a right R-module M is called Mittag–Leffler if the canonical
map of groups

M ⊗R

(∏
i∈I

Ni

)
−→

∏
i∈I

(M ⊗R Ni)

is injective for each family of left R-modules {Ni | i ∈ I}. This concept comes
from [71].

Let D be the class of all flat Mittag–Leffler R-modules. There are several
characterizations of modules in D already in work of Raynaud and Gruson [71],
but the latest one is due to Herbera and Trlifaj, [29, Theorem 2.9]: Flat Mittag-
Leffler modules coincide with so called ℵ1-projective modules. For R = Z, this
simply means that G ∈ D if and only if each countable subgroup of G is free,
which is a special case of [3, Proposition 7] proved by Azumaya and Facchini.
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Theorem 5.3.1. Let R be a countable ring and let D be the class of all right
flat Mittag–Leffler R-modules. Then K(D) is always closed under coproducts in
K(Mod(R)), but the inclusion functor K(D)→ K(Mod(R)) has a right adjoint
if and only if R is a right perfect ring. In particular, a right adjoint does not
exist for R = Z.

Proof. It is rather easy to see that D is closed under direct sums and contains
all projective modules.

Assume first that R is right perfect. Then D coincides with the class of pro-
jective modules. In particular, K(D) is a well-generated triangulated category
by [62, Theorem 1.1], so the inclusion K(D)→ K(Mod(R)) has a right adjoint
by [60, Theorem 8.4.4].

On the other hand, assume that K(D) → K(Mod(R)) has a right adjoint.
Given any G ∈ Mod(R) and considering it as a stalk complex in degree 0,
we have the counit of adjunction εG : D → G. Let us take the R–module
homomorphism f = ε0

G : D0 → G in degree 0. Clearly D0 ∈ D and it is easy
to see that any R–module homomorphism f ′ : D′ → G with D′ ∈ D factors
through f . That is, D is what is usually called a precovering class in Mod(R).
However, according to [5, Theorem 6], this implies for a countable ring R that
it is right perfect.

Example 5.3.2. Theorem 5.3.1 gives an example of a triangulated coproduct
preserving functor which has no right adjoint, namely the inclusion functor
K(D)→ K(Ab), whereD is the full subcategory of all flat Mittag–Leffler abelian
groups. Using the equivalence of categories K(D)o

∼−→ K(Do) from Remark
5.2.12, we obtain a triangulated product preserving functor which has no left
adjoint.

Here we will provide another example of this kind, which holds only in an
extension of ZFC. More precisely, assume there are no measurable cardinals. For
every cardinal λ let us denote by Zλ the product of λ-copies of Z and by Z<λ its
subgroup consisting of sequences with support (i.e. the set of non-zero entries)
of cardinality smaller then λ. Let A ⊆ Ab be the closure under products and
direct factors of the class of all abelian groups of the form Zλ/Z<λ, where λ runs
over all regular cardinals. The inclusion functor K(A)→ K(Ab) is triangulated
and preserves products. If we suppose that it has a left adjoint then K(A)
must be preenveloping in K(Ab) by Corollary 2.2.5. For X ∈ Ab, the complex
having X in degree 0 and 0 elsewhere must have an K(A)-preenvelope, which
is a complex A with entries in A. As in the proof of Theorem 5.3.1, it is not
hard to see that X → A0 is an A-preenvelope of X. But this contradicts [15,
Proposition 2.5], where it is shown that, under the hypothesis of nonexistence
of measurable cardinals, the class A is not preenveloping in Ab.
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Chapter 6

Brown representability for
the dual

In this chapter we show that the following categories: D(A)o for a wide class
of abelian categories A; K(Proj(R))o for an arbitary ring with several ob-
jects R and K(Proj(R,Q))o, where Proj(R,Q) is the category of projective
R-representations of a quiver Q satisfy Brown representability. The material is
taken from [54], [52] and [53], but [52] is almost entirely replaced by the more
general [53].

6.1 The dual of Brown representability for some
derived categories

In this section our triangulated category is T = D(A), the derived category of
an abelian category A. For a complex X• and a positive integer n ∈ N, consider
the truncation

X≥−n = (0→ B−n(X•)→ X−n → X−n+1 → · · · ).

There is a map of complexes X≥−(n+1) → X≥−n which is the identity Xi → Xi

in degrees i ≥ −n, the zero map in degrees i < −(n + 1) and the canonical
epimorphism X−(n+1) → B−n(X•) in degree −(n + 1). In this way, we obtain
an inverse tower

X≥0 ← X≥−1 ← X≥−2 ← · · · .
Following [65], the category D(A) is said to be left–complete, provided that

it has products and with the notation above X• ∼= holim←−−−X
≥−n.

An example of a non–left–complete derived category can be found in [65]. In
counterpart, some examples of left–complete categories will be provided later.

Theorem 6.1.1. Let A be a complete abelian category possessing an injective
cogenerator, and let D(A) be its derived category. If D(A) is left–complete, then
D(A) has small hom–sets and D(A)o satisfies Brown representability.

61
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Before we prove Theorem 6.1.1 we state some immediate consequences. Re-
call that a complete abelian category A is said to be AB4∗-n, with n ∈ N, if the
i-th derived functor of the direct product functor is zero, for all i > n (see also
[70] or [30]). Clearly AB4∗-0 categories are the same as AB4∗ categories, that
is abelian categories with exact products.

Corollary 6.1.2. Let A be an abelian complete category possessing an injective
cogenerator. If A is AB4∗-n, for some n ∈ N and D(A) has products, then
D(A) has small hom–sets and D(A)o satisfies Brown representability.

Proof. We know by [30, Theorem 1.3], that D(A) is left–complete, hence The-
orem 6.1.1 applies.

Let A be an abelian category with enough injectives. An injective resolution
of X ∈ A is a complex of injectives E• which is zero in negative degrees, together
with an augmentation map X → E•, such that the complex 0 → X → E0 →
E1 → · · · is acyclic. The injective dimension of an object X ∈ A is defined to
be the smallest n ∈ N for which X has an injective resolution of the form

0→ X → E0 → E1 → · · · → En−1 → En → 0,

or∞ if such an injective resolution does not exist. Equivalently, X has injective
dimension n if it is the smallest non–negative integer for which Extn+1(−, X)
vanishes. The global injective dimension of A is defined to be the supremum of
all injective dimensions of its objects.

Remark 6.1.3. Products in module categories are exact, that is Mod(R) is AB4∗

for every ring R (with or without one), hence Corollary 6.1.2 applies. But in
this case the derived category is known to be compactly generated, hence both
D(A) and D(A)o satisfy Brown representability, for example by [43, Theorem
A and Theorem B]. An example of a Grothendieck AB4∗ category which has
no nonzero projectives, hence it is not equivalent to a module category, may be
found in [70, Section 4]. Note also that in [30, Theorem 1.1] there are other
examples of abelian categories A which are AB4∗-n, for some n ∈ N, that is
categories for which D(A)o satisfies Brown representability, by Corollary 6.1.2
above.

Corollary 6.1.4. Let A be an abelian complete category possessing an injective
cogenerator. If A is of finite global injective dimension and D(A) has products,
then D(A) has small hom–sets and D(A)o satisfies Brown representability.

Proof. We want to apply Corollary 6.1.2, so we will to show that A is AB4∗-n,
where n is the global injective dimension of A. Fix an index set I. The k-

th derived functor of the product
∏(k)

: AI → A can be computed as follows:
Consider arbitrary objectsXi ∈ A with i ∈ I. For every i choose an injective res-

olution Xi → E•i of length less than or equal to n. Then
∏(k)

Xi = Hk(
∏
E•i ),

therefore
∏(k)

Xi = 0 for k > n.
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Corollary 6.1.5. If A is the category of quasi-coherent sheaves over a quasi-
compact and separated scheme then D(A) has small hom–sets and D(A)o satis-
fies Brown representability. In particular, the conclusion holds for the category
A of quasi-coherent sheaves over PdR, where PdR is the projective d-space, d ∈ N∗,
over an arbitrary commutative ring with one R.

Proof. The category of quasi–coherent sheaves is Grothendieck, hence D(A)
satisfies Brown representability (see for example [2, Theorem 5.8]). Conse-
quently, D(A) has products, by [60, Proposition 8.4.6]. Moreover, according to
[30, Remark 3.3], the category of quasi–coherent sheaves over a quasi–compact,
separated scheme is AB4∗-n, for some n ∈ N.

Finally, PdR is obtained by gluing together d + 1 affine open sets (see [77,
4.4.9]). Hence, it is quasi–compact (see also exercise [77, 5.1.D]). Moreover, PdR
is separated by [77, Proposition 10.1.5].

The proof of Theorem 6.1.1 is based on a combination between Theorem
3.1.3 and an adaptation of the argument in [37, Appendix]. For performing it,
fix a complete abelian category A, which has an injective cogenerator.

Recall that a complex X• ∈ K(A) is called homotopically injective if

K(A)(N•, X•) = 0,

for any acyclic complex N•. Denote by Ki(A) the full subcategory of K(A)
consisting of homotopically injective complexes. It follows immediately, that
Ki(A) is a triangulated subcategory of A closed under products and direct
summands. Dually, we can define the homotopically projective complexes and
we write Kp(A) for the full subcategory of K(A) consisting of such complexes.
A homotpically injective resolution of a complex X• ∈ K(A) is by definition
a quasi-isomorphism X• → E•, with E• homotopically injective. Homotopi-
cally injective and projective complexes and resolutions were first defined by
Spaltenstein in [72], but we follow the approach in [37]. If every complex in
K(A) has a homotopically injective (projective) resolution, then this resolution
yields a left (right) adjoint of the inclusion functor Ki(A)→ K(A) (respectively
Kp(A) → K(A)); the argument in [37, 1.2] generalizes with no change in this
more general case. For example, if R is a ring and A = Mod(R) is the category
of all right modules over R, then A has enough projective and enough injective
objects, and by [37, 1.1. and 1.2] we have equivalences of categories

Kp(Mod(R))
∼−→ D(Mod(R))

∼←− Ki(Mod(R)).

More generally, if A is a Grothendieck category, it may not have enough projec-
tives, and the left side functor might not be an equivalence. But it must have
enough injectives, and the right side equivalence must hold as it can be seen
from [2, Section 5]. Another proof of this fact is contained in [21, Section 3].

We consider double complexes with entries in A, whose differentials go from
bottom to top and from left to right. That is, a double complex is a commutative
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diagram of the form:

X•,• =


Xi+1,j

di+1,j
h // Xi+1,j+1

Xi,j

di,jv

OO

di,jh

// Xi,j+1

di,j+1
v

OO


i,j∈Z

such that d2
v = 0 = d2

h. We denote by X•,j the columns and by Xi,• the rows
of X•,•.

Let X• ∈ C(A) be a complex. We identify it with a double complex concen-
trated in the 0-th column, making explicit the reason for which simple complexes
are columns. A Cartan–Eilenberg injective resolution for X• (CE injective res-
olution for short) is a right half–plane double complex E•,• (that is Ei,j = 0 for
j < 0), together with an augmentation map (of double complexes) X• → E•,•

(with the identification above) such that Ei,• = 0 provided that Xi = 0 and the
induced sequences

0→ Hi(X•)→ Hi(E•,0)→ Hi(E•,1)→ · · · ,

0→ Bi(X•)→ Bi(E•,0)→ Bi(E•,1)→ · · ·

are injective resolutions for all i ∈ Z (see [79, Definition 5.7.1]). If X• → E•,•

is a CE injective resolution, then the induced sequences

0→ Zi(X•)→ Zi(E•,0)→ Zi(E•,1)→ · · · ,

0→ Xi → Ei,0 → Ei,1 → · · ·

are injective resolutions for all i ∈ Z (see [79, Exercise 5.7.1]). For constructing a
CE injective resolution for a given complexX• we start with injective resolutions
for Hi(X•) and Bi(X•), for all i ∈ Z. Since the sequences 0 → Bi(X•) →
Zi(X•) → Hi(X•) → 0 and 0 → Zi(X•) → Xi → Bi+1(X•) → 0 are short
exact, we use horseshoe lemma in order to construct injective resolutions for
Zi(X•) and Xi. Assembling together these data we obtain the desired CE
injective resolution is X• → E•,• (see also [79, Lemma 5.7.1]). If E≥−n,• is the
truncated double complex having the columns

E≥−n,j = (0→ B−n(E•,j)→ E−n.j → E−n+1,j → · · · )t

then by the very definition of a CE injective resolution we infer that X≥−n →
E≥−n,• is a CE injective resolution for the truncated complex.

Remark 6.1.6. The sequences 0 → Bi(E•,j) → Zi(E•,j) → Hi(E•,j) → 0 and
0→ Zi(E•,j)→ Ei,j → Bi+1(E•,j)→ 0 have injective components, hence they
are split exact for all i, j ∈ Z, j ≥ 0.
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Next we define the cototalization of a double complex X•,• with Xi,j ∈ A
as the simple complex Cot(X•,•) having entries:

Cot(X•,•)n =
∏

i+j=n

Xi,j

and whose differentials are induced by using the universal property of the prod-
uct by the maps

∏
i+j=n

Xi,j → Xp,q−1 ×Xp−1,q (dp,q−1
h ,dp−1,q

v )
−→ Xp,q

for all p, q ∈ Z with p+ q = n+ 1.

Lemma 6.1.7. Consider a complete abelian category A, which has an injective
cogenerator. If X• → E•,• is a CE injective resolution of the complex X• ∈
C(A) then Cot(E•,•) ∼= holim←−−−Cot(E≥−n,•) is homotopically injective.

Proof. For every n ∈ N we observe that there is a map of double complexes
E≥−(n+1),• → E≥−n,• which is the identity Ei,• → Ei,• for i ≥ −n, the zero
map for i < −(n + 1) and the epimorphism E−(n+1),• → B−n(E•,•) for i =
−(n + 1). Hence Remark 6.1.6 tells us that E≥−(n+1),• → E≥−n,• are split
epimorphisms in each degree, for every n ∈ N. According to [57, Lemma 2.17]
they induce degree–wise split epimorphisms

Cot(E≥−(n+1),•)→ Cot(E≥−n,•),

for all n ∈ N. Thus there is a degree–wise split short exact sequence in C(A)

0→ lim←−Cot(E≥−n,•)→
∏
n∈N

Cot(E≥−n,•)
1−shift−→

∏
n∈N

Cot(E≥−n,•)→ 0

which induces a triangle in K(A). On the other hand, we have

lim←−Cot(E≥−n,•) ∼= Cot(E•,•)

in C(A), and the induced triangle leads to an isomorphism

holim←−−−Cot(E≥−n,•) ∼= Cot(E•,•)

in K(A) (see also [34, Lemma 2.6]). As we noticed, Ki(A) is a triangulated
subcategory closed under products, hence it is also closed under homotopy lim-
its. Finally it remains to show that Cot(E≥−n,•) is homotopically injective for
all n ∈ N. But this property holds for bounded below complexes having injec-
tive entries (see for example [79, Corollary 10.4.7]), in particular it is true for
Cot(E≥−n,•) too.
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For every complex X• ∈ C(A) having a CE injective resolution X• → E•,•

we have an obvious map X• → Cot(E•,•). Sometimes it happens that this
map is a quasi-isomorphism, in which case Lemma 6.1.7 above tells us that it
is a homotopically injective resolution. The following lemma shows that this is
always the case for bounded below complexes, that is complexes X• for which
Xn = 0 for n << 0.

Lemma 6.1.8. Consider a complete abelian category A, which has an injective
cogenerator. Let X• ∈ C(A) be a bounded below complex and let X• → E•,• be
a CE injective resolution. Then X• → Cot(E•,•) is a homotopically injective
resolution.

Proof. Without losing the generality, we may suppose that Xj = 0 for all j < 0,
so Ei,j = 0 for i < 0 or j < 0. Consider the bicomplex

A•,• = 0→ X• → E•,0 → E•,1 → · · · ,

that is the bicomplex whose first column is X• followed by the columns of E•,•

shifted by −1. The sequence of bicomplexes A•,• → X• → E•,• induces a
triangle

Cot(A•,•)→ X• → Cot(E•,•)→ ΣCot(A•,•)

in K(A), since ΣCot(A•,•) is the mapping cone of X• → Cot(E•,•). Now A•,•

is a first quadrant bicomplex (that is Ai,j = 0 for i < 0 or j < 0) with acyclic
rows. We claim its cototalization is acyclic, and the triangle above proves our
lemma.

Because A•,• lies in the first quadrant, it follows that Cot(A•,•)n = 0 for
n < 0. Fix n ≥ 0, and let A≤n+1,• be the truncation of A obtained by deleting
the rows in degree > n+ 1, and replacing the (n+ 1)-th row with

· · · → Zn+1(Ai,•)→ Zn+1(Ai+1,•)→ · · · .

Since, for 0 ≤ m ≤ n+1, the computation of Cot(A•,•)m involves only the rows
Ai,• with 0 ≤ i ≤ m, therefore Cot(A•,•)k = Cot(A≤n,•)k, for all 0 ≤ k ≤ n.
But A≤n,• is a first quadrant bicomplex with acyclic rows which has only finitely
many non–zero rows, therefore we can obtain Cot(A≤n,•) in finitely many steps
by forming triangles whose cones are the rows. This shows that Cot(A≤n,•) is
acyclic, hence Cot(A•,•) is acyclic in degree n. Because n is arbitrary our claim
is proved (see also [57, Lemma 2.19]).

Proposition 6.1.9. Consider a complete abelian category A, which has an in-
jective cogenerator, such that D(A) has products. Suppose also that for any com-
plex in X• ∈ C(A) the cototalization of any CE injective resolution X• → E•,•

provides a homotopically injective resolution X• → Cot(E•,•). Then D(A)
has small hom–sets, D(A)o is deconstructible and D(A)o satisfies Brown rep-
resentabily.
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Proof. By hypothesis, X• → Cot(E•,•) is a homotopically injective resolution,
for every X• ∈ K(A). Completing it to a triangle

N• → X• → Cot(E•,•)→ ΣN•

we deduce that N• is acyclic, that is K(A)(N•, I•) = 0 for all I• ∈ Ki(A). By
standard arguments concerning Bousfield localizations, see [60, dual of Theo-
rems 9.1.16 and Theorem 9.1.13], we obtain an equivalence of categories

Ki(A)
∼−→ D(A),

so D(A) has small hom–stes.
Note that every complex X• is isomorphic in D(A) to Cot(E•,•). Moreover,

Lemma 6.1.7 implies Cot(E•,•) ∼= holim←−−−Cot(E≥−n,•). But, for every n ∈ N,

the kernel of the degree–wise split epimorphism of complexes (see the proof of
Lemma 6.1.7) Cot(E≥−(n+1),•)→ Cot(E≥−n,•) is the complex

0→ B−(n+1)(E•,0)→ Z−(n+1)(E•,0)× B−(n+1)(E•,1)

→ Z−(n+1)(E•,1)× B−(n+1)(E•,2)→ · · ·

with differentials being represented as matrices whose components are the inclu-
sions B−(n+1)(E•,j)→ Z−(n+1)(E•,j) and 0 otherwise. Computing the cohomol-
ogy of this complex we can see that it is quasi-isomorphic, therefore isomorphic
in Ki(A), to the complex:

0→ H−(n+1)(E•,0)→ H−(n+1)(E•,1)→ H−(n+1)(E•,2)→ · · · ,

with vanishing differentials. But this last complex is the product of its subcom-
plexes concentrated in each degree and all entries are injective, hence they are
direct summands of a product of copies of Q, where Q is an injective cogenerator
of A. Therefore, every object in Ki(A) is S-cofiltered, for S = {ΣnQ | n ∈ Z},
and Lemma 3.1.3 applies.

Proof of Theorem 6.1.1. We want to apply Proposition 6.1.9, hence we have to
show that, if D(A) is left–complete, then the cototalization of a CE injective
resolution X• → E•,• provides a homotopically injective resolution for the com-
plex X• ∈ C(A). This is true for the truncated complexes X≥−n for all n ∈ N,
by Lemma 6.1.8 above, since X≥−n → E≥−n,• is also a CE injective resolution.
Therefore, X≥−n ∼= Cot(E≥−n,•) in D(A). Taking homotopy limits and using
the hypothesis and Lemma 6.1.7 we obtain:

X ∼= holim←−−−X
≥−n ∼= holim←−−−Cot(E≥−n,•) ∼= Cot(E•,•)

and the proof is complete.

Remark 6.1.10. For complexes of R-modules, where R is a ring, it is showed in
[37] that the cototalization of a CE injective resolution provides a homotopically
injective resolution. The technique used there for doing this stresses the so called
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Mittag–Leffler condition, which says that limits of inverse towers whose connect-
ing maps are surjective are exact. Amnon Neeman pointed out that Mittag–
Leffler condition doesn’t work in the more general case of Grothendieck cate-
gories, as it may be seen from [70, Corollary 1.6]. Consequently the argument
of Keller in [37] may not be used without changes in the case of Grothendieck
categories.

In the following Corollary we point out that homotopically injective resolu-
tions exist in K(A), provided that the abelian categoryA satisfies the hypothesis
of Theorem 6.1.1.

Corollary 6.1.11. The following statements hold for a complete abelian cate-
gory A possessing an injective cogenerator for which the derived category D(A)
is left–complete:

(1) Every object in K(A) has a homotopically injective resolution.

(2) There is an equivalence of categories Ki(A)
∼−→ D(A).

(3) Every additive functor F : A → B to another abelian category B has a
total right derived functor RF : D(A)→ D(B) (for details see [37, 1.4]).

Proof. As we have already seen the hypotheses of Proposition 6.1.9 are satisfied,
hence (1) and (2) hold as it is established in the proof of this Proposition. From
here the statement (3) is straightforward.

Remark 6.1.12. Notice that the conclusions of Corollary 6.1.11 are already
known for Grothendieck categories (see [2]). Even if the category A is not
necessary Grothendieck, but it satisfies the hypotheses of Theorem 6.1.1, we
can easily prove (1), as follows: Let X ∈ K(A)¿ Because T is left–complete X
is the homotopy limit in D(A) of an inverse tower

X≥0 ← X≥−1 ← X≥−2 ← · · · .

whose terms are bounded below complexes. Replacing every term of this tower
with a homotopically injective resolution, which exists by Lemma 6.1.8, we
obtain an inverse tower

E≥0 ← E≥−1 ← E≥−2 ← · · ·

which is quasi-isomorphic to the first one. Then we get a quasi-isomorphism
X → holim←−−−n≤0

E≥n, providing a homotopically injective resolution for X. Now

(2) and (3) are straightforward. The problem with this shortest argument is
that we have less control over the complexes E≥n, in particular we do not know
that the kernel the map E≥n ← E≥n−1 has vanishing differentials, hencefort it
is not clear if Brown representability for D(A)o can be deduced from it.
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6.2 Cogenerators in triangulated categories

An ideal in an additive category A is a collection of morphisms which is closed
under addition and composition with arbitrary morphisms in A. For s ∈ N∗,
the s-th power of an ideal I denoted Is is the ideal generated (that is the closure
under addition) of the set

{f | there are f1, . . . , fs ∈ I such that f = f1 · · · fs}.

If I and J are ideals, then to show that Is ⊆ J it is obviously enough to show
that the generators f = f1 · · · fs lie in J . From now on S ⊆ T is a Σ-stable
set. We call S-(co)phantom a map φ : X → Y with the property T (S, φ) = 0
(respectively T (φ,S) = 0). (The notations T (S, φ) = 0 and T (φ, S) = 0 mean
T (S, φ) = 0, respectively T (φ, S) = 0, for all S ∈ S.) Observe that φ : X → Y
is a phantom if and only if for every map S → X with S ∈ S, the composite

map S → X
φ−→ Y vanishes, and dual for a cophantom. We denote

Φ(S) = {φ | φ is an S-phantom} and Ψ(S) = {ψ | φ is an S-cophantom}.

Clearly Φ(S) and Ψ(S) are Σ-stable ideals in T , that is they are also closed
under Σ and Σ−1. The ideals defined above depend on the ambient category
T . If we want to emphasize this dependence we will write ΦT (S), respectively
ΨT (S).

Lemma 6.2.1. If C is a set of objects in T then every Y ∈ T has a Prod(C)–
preenvelope Y → Z. Moreover if C is also Σ-stable, then this preenvelope fits in

a triangle X
ψ→ Y → Z → ΣX, with ψ ∈ Ψ(C).

Proof. The argument is standard: Let Z =
∏
C∈C,α:Y→C C and Y → Z the

unique map making commutative the diagram:

Y //

α
��

Z

pC,α��
C

where pC,α is the canonical projection for all C ∈ C and all α : Y → C. For a
Σ-stable set C, we complete this map to a triangle

X
ψ→ Y → Z → ΣX.

It may be immediately seen that the condition to be a Prod(C)–preenvelope is
equivalent to ψ ∈ Ψ(C).

Lemma 6.2.2. Assume that C ⊆ T and G ⊆ T are two Σ-stable sets, such that
there is s ∈ N∗ with the property Ψ(C)s ⊆ Φ(G). Then every Y ∈ T fits in a

triangle X
φ→ Y → Z → ΣX, with Z ∈ Prods(C) and φ ∈ Φ(G).
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Proof. We begin with an inductive construction. First denote X1 = Y , and
if Xk is already constructed, k ∈ N∗, then use Lemma 6.2.1 to construct the
triangle

Xk+1
ψk→ Xk → Pk → ΣXk+1,

where Xk → Pk is a Prod(C)–preenvelope of Xk and ψk ∈ Ψ(C). Define also
ψ1 = 1Y : X1 → Y and ψk+1 = ψkψk : Xk+1 → Y . Next complete them to

triangles Xk
ψk→ Y → Zk → ΣXk, for all k ∈ N∗. The octahedral axiom allows

us to construct the commutative diagram whose rows and columns are triangles:

Σ−1Zk

��

Σ−1Zk

��
Xk+1

ψk // Xk
//

ψk

��

Pk //

��

ΣXk+1

Xk+1
ψk+1

// Y //

��

Zk+1
//

��

ΣXk+1

Zk Zk

.

We have Z1 = 0, Z2
∼= P1 ∈ Prod(C) and the triangle in the second column of

the above diagram allows us to complete the induction step in order to show
that Zk+1 ∈ Prodk(C). Clearly we also have ψk+1 ∈ Ψ(C)k, thus the desired

triangle is Xs+1
ψs+1

−→ Y −→ Zs+1 −→ ΣXs+1.

Lemma 6.2.3. Assume that C ⊆ T and G ⊆ T are two Σ-stable sets, such that
there is s ∈ N∗ with the property Ψ(C)s ⊆ Φ(G). Then every map Y → Z in T
with Z ∈ Prodn(C) factors as Y → Z ′ → Z, where Z ′ ∈ Prodn+s(C) and the
induced maps

T (G, Y )→ T (G,Z) and T (G,Z ′)→ T (G,Z)

have the same image, for all G ∈ G.

Proof. Complete Y → Z to a triangle Y → Z → Y ′ → ΣY and let

X
φ→ Y ′ → Z ′′ → ΣX,

with φ ∈ Φ(G) and Z ′′ ∈ Prods(C) the triangle whose existence is proved in
Lemma 6.2.2. Complete the composed map Z → Y ′ → Z ′′ to a triangle

Z ′ → Z → Z ′′ → ΣZ ′.

It is clear that Z ′ ∈ Prodn+s(C). We can construct the commutative diagram:

Y //

��

Z // Y ′ //

��

ΣY

��
Z ′ // Z // Z ′′ // ΣZ ′
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by completing the middle square with Y → Z ′ in order to obtain a morphism
of triangles. Applying the functor T (G,−) with an arbitrary G ∈ G we get a
commutative diagram with exact rows:

T (G, Y ) //

��

T (G,Z) // T (G, Y ′)

��
T (G,Z ′) // T (G,Z) // T (G,Z ′′)

.

Since φ ∈ Φ(G) we deduce T (G, Y ′) → T (G,Z ′′) is injective, so the kernels of
the two right hand parallel arrows are the same. But these kernels coincide to
the images of the two left hand parallel arrows.

A diagram of triangulated categories and functors of the form L I→ T Q→ U
is called a localization sequence if I is fully faithful and has a right adjoint,
KerQ = Im I and Q has a right adjoint too. By formal non-sense (see [60,
Theorem 9.1.16]) this right adjoint Qρ of Q has also to be fully faithful and
makes U equivalent to the category (Im I)⊥.

Theorem 6.2.4. Let G ⊆ T be a Σ-stable set and denote U =
(
G⊥
)⊥

. Suppose
that there is a Σ-stable set C ⊆ U and an integer s ∈ N∗ such that Ψ(C)s ⊆ Φ(G).
Then U = Coloc(C), there is a localization sequence G⊥ → T → U and Uo

satisfies Brown representability.

Proof. Note first that, by its very construction, U is triangulated and closed

under products in T . Fix Y ∈ T . Construct as in Lemma 6.2.2 a triangle X1
φ1→

Y → Z1 → ΣX1, with Z1 ∈ Prods(C) and φ1 ∈ Φ(G). We use Lemma 6.2.3 in
order to inductively construct maps Y → Zn, with Zn ∈ Prodsn(C), n ∈ N∗,
such that every Y → Zn factors as Y → Zn+1 → Zn, with the abelian group
homomorphisms T (G, Y )→ T (G,Zn) and T (G,Zn+1)→ T (G,Zn) having the
same image, for all G ∈ G. From now on the argument runs as in the proof of [64,
Theorem 4.7]. We recall it here for the reader’s convenience: Let Z = holim←−−−Zn.
We have constructed the commutative diagram in T :

Y

��

Y

��

Y

��

· · ·

Z1 Z2
oo Z3

oo · · ·oo

inducing a map Y → Z. Fix G ∈ G. Applying the functor T (G,−) to above
diagram in T we get a commutative diagram of abelian groups

T (G, Y )

��

T (G, Y )

��

T (G, Y )

��

· · ·

T (G,Z1) T (G,Z2)oo T (G,Z3)oo · · ·oo
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with the first (hence all) vertical map(s) injective, and the images of both maps
ending in each T (G,Zn), n ∈ N∗, coincide. This shows that the tower below is
the direct sum of the above one and a tower with vanishing connecting maps,
hence T (G, Y ) ∼= lim T (G,Zn) canonically. Moreover the inverse limit of the
second row has to be exact, thus we obtain a short exact sequence:

0→ lim T (G,Zn) −→
∏
n∈N∗

T (G,Zn)
1−shift−→

∏
n∈N∗

T (G,Zn)→ 0.

Comparing this sequence with the one obtained by applying T (G,−) to the
triangle

Z −→
∏
n∈N∗

Zn
1−shift−→

∏
n∈N∗

Zn −→ ΣZ

we deduce lim T (G,Zn) ∼= T (G,Z). Therefore the map Y → Z constructed

above induces an isomorphism T (G, Y )
∼=−→ T (G,Z). Complete Y → Z to a

triangle
X → Y → Z → ΣX.

Since G was arbitrary, we deduce X ∈ G⊥ and obviously Z ∈ U . Therefore
the triangle above corroborated with [60, Theorem 9.1.13] proves that there is
a localization sequence G⊥ → T → U . Finally supposing Y ∈ U this forces
X ∈ U , because U is triangulated. Since we have also X ∈ G⊥ we infer X = 0,
thus Y ∼= Z = holim←−−−Zn ∈ Coloc(C), hence U = Coloc(C) is S–cofiltered and all
we need is to apply Theorem 3.1.3.

Corollary 6.2.5. Assume that C ⊆ T and G ⊆ T are two Σ-stable sets, such
that there is s ∈ N∗ with the property Ψ(C)s ⊆ Φ(G), and assume also that G
generates T . Then T = Coloc(C) and T o satisfies Brown representability.

Proof. The hypothesis G generates T means G⊥ = {0}. Thus one applies The-

orem 6.2.4 with U =
(
G⊥
)⊥

= T .

Corollary 6.2.6. Let G ⊆ T be a Σ-stable set and denote U =
(
G⊥
)⊥

. Suppose
that there is a Σ-stable set C ⊆ U and an integer s ∈ N∗ such that Ψ(C)s ⊆ Φ(G).
Suppose in addition that T has coproducts and there is a localization sequence
Loc(G)→ T → G⊥. Then Loc(G) is equivalent to U and, consequently, Loc(G)

o

satisfies Brown representability. In particular, a localization sequence as above
exists, provided that objects in G are α-compact, for a regular cardinal α.

Proof. First apply Theorem 6.2.4 in order to obtain a localization sequence
G⊥ → T → U . Together with the localization sequence whose existence is
supposed in the hypothesis, this shows that both categories Loc(G) and U are
equivalent to the Verdier quotient T /G⊥, hence they are equivalent to each
other. Finally provided that objects in G are α-compact, we know by [60,
Theorem 8.4.2] that Loc(G) satisfies Brown representability. Consequently the
inclusion functor Loc(G) → T which preserves coproducts must have a right
adjoint and a localization sequence Loc(G)→ T → G⊥ exists.
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In the end of this section let observe that the general version of Brown
representability for covariant functors proved in [43] is a consequence of our
criterion. In order to do that, let T be a triangulated category with products
and coproducts. Recall from [43, Definition 2] that a set of symmetric generators
for T is a set G ⊆ T which generates T such that and there is another set
C ⊆ T with the property that for every map X → Y in T the induced map
T (G,X) → T (G, Y ) is surjective for all G ∈ G if and only if the induced map
T (Y,C) → T (X,C) is injective for all C ∈ C. Completing the map X → Y
to a triangle it is easy to see that the last condition is equivalent to the fact
Φ(G) = Ψ(C). Remark also that without losing the generality, we may suppose
the sets G and C to be Σ-closed. Applying Corollary 6.2.5 we obtain:

Corollary 6.2.7. [43, Theorem B] If T has products, coproducts and a set of
symmetric generators, then T o satisfies Brown representability.

Remark also that hypotheses in [43, Theorem B] are general enough to in-
clude the case of compactly generated categories.

6.3 The dual of Brown representability for ho-
motoy category of projectives

Recall that a ring with several objects is a small preadditive category R, and an
R-module is a functor Ro → Ab. (Our modules are right modules by default.)
Clearly if the category R has exactly one object, then it is nothing else than
an ordinary ring with unit, and modules are abelian groups endowed with a
multiplication with scalars from R. In the sequel, the category A will be often
an additive exact (that is closed under extensions) subcategory of the category
Mod(R) of modules over a ring with several objects R. For example, A may
be Flat(R) of Proj(R) the full subcategories of all flat, respectively projective
modules. Another source of examples is the subcategory of projective complexes
over a module category R, that is Proj(C(R)). Note then that if A ⊆ Mod(R) or
A ⊆ C(Mod(R)) an additive exact category as above, then K(A) is triangulated
subcategory of K(Mod(R)) respectively K(C(Mod(R))).

In the proof of the next Lemma and Theorem we will use several results in
[62], [64] and [63]; note that even they are stated for rings with one, they don’t
make use of the existence of the unit, and the same arguments can be used for
rings with several objects.

Lemma 6.3.1. The category K(Proj(R)) has products.

Proof. From [62, Theorem 1.1] we learned that K(Proj(R)) is well–generated,
hence it satisfies Brown representability. The existence of products follows by
Theorem 1.4.4.

Theorem 6.3.2. If R is a ring with several objects, then K(Proj(R))o satisfies
Brown representability.
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Proof. We want to apply Corollary 6.2.6, therefore we have to verify that the as-
sumptions made there are fulfilled. First the category K(Proj(R)) has products,
by Lemma 6.3.1 above.

The ambient category is T = K(Flat(R)). We know by [62, Theorem 5.9]
that is full subcategory which contains a set of representatives, up to homotopy
equivalence, for bounded below complexes with finitely generated projective
entries is a a set of ℵ1-compact generators for K(Proj(R)). This subcategory
is considered in [62, Construction 4.3]. Let G be the closure under suspensions
and desuspensions of this generating set. Clearly G also generates K(Proj(R))
and we have K(Proj(R)) = Loc(G). Denote

U =
(
G⊥
)⊥

=
(
K(Proj(R))⊥

)⊥
.

According to [64, Definition 1.3], a map X → Y of complexes of R-modules is
called a tensor phantom map, if the induced map X ⊗R I → Y ⊗R I vanishes
in cohomology for every test–complex I.

Following [64, Definition 1.1], we call test–complex a bounded below complex
I of injective left R-modules satisfying the additional properties that Hn(I) = 0
for all but finitely many n ∈ Z and for those n for which Hn(I) 6= 0, this
module is isomorphic to subquotient of a finitely generated projective module.
According to [64, Remark 1.2] there is only a set of test complexes up to homo-
topy equivalence. Note that [63, Theorem 3.2] states that the inclusion functor
K(Flat(R))→ K(Mod(R)) has a right adjoint, which we denote here by

J : K(Mod(R))→ K(Flat(R)).

Define C to be the closure under Σ and Σ−1 of the the full subcategory of T =
K(Flat(R)) which contains exactly the objects of the form J(HomZ(I,Q/Z))
where I runs over a set of representatives up to homotopy equivalence of all
test–complexes. Then [64, Lemma 2.6] implies C ⊆ U . According to [64, Lemma
2.8], we have

Ψ(C) = {ψ | ψ is a tensor phantom map}.

Moreover Ψ(C)2 ⊆ Φ(G), as [64, Lemma 1.9] states. Therefore Corollary 6.2.6
applies, hence K(Proj(R))o = Loc(G)o satisfies Brown representability.

The following Corollary gives an argument for the existence of the left adjoint
of the inclusion functor U → K(Flat(R)) is a consequence of Theorem 6.3.2. By
now there are several proof of this fact (see [64]), but the new one is deduced
more conceptually as a consequence of Brown representability.

Corollary 6.3.3. With the notations made in the proof of Theorem 6.3.2 The
inclusion functor U → K(Flat(R)) has a left adjoint.

Proof. By Corollary 6.2.6, U is equivalent to K(Proj(R)), so it satisfies Brown
representability, and the conclusion follows by 1.4.3.

Pure–projective modules can be seen as projective modules over a suitable
ring with several objects. This idea leads to:
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Corollary 6.3.4. If R is a ring, then the dual of the homotopy category of
pure–projective modules satisfies Brown representability.

Proof. Let R be a ring and denote by Pproj(R) the category of pure projective
R-modules. Denote by A = mod(R) the full subcategory of Mod(R) which
consists of all finitely presented modules, and regard it as a ring with several
objects. It is well known that the functor

Mod(R)→ Mod(A), X 7→ HomR(−, X)|A

is an embedding and restrict to an equivalence Pproj(R)
∼→ Proj(A). Now apply

Theorem 6.3.2.

Recall that a ring is pure semisimple if every R-module is pure projective.
Therefore from Corollary 6.3.4 we can derive a new proof for an already known
result (see Theorem 5.2.10 and Remark 5.2.11):

Corollary 6.3.5. If the ring R is pure semisimple then K(Mod(R))o satisfies
Brown representability.

In the following we want to study Brown representability for the dual of
the homotopy category of projective representations over a quiver. In order
to perform this, we note first that coreflective subcategories in the sense of [1]
inherits deconstructibity:

Proposition 6.3.6. Let U : L → T be a fully faithful functor which has a right
adjoint F : T → L. If T o is deconstructible, then Lo is so and, consequently,
Lo satisfies Brown representability.

Proof. By hypothesis there is a set C such that T is C–cofiltered. We shall show
that L is F (C)-filtered, and we are done. Let X ∈ L. Then for U(X) ∈ T there
is an inverse tower

0 = X0 ← X1 ← · · ·

such that U(X) ∼= holim←−−−n∈NXn and in the triangle Xn+1 → Xn → Pn →
ΣXn+1 we have Pn ∈ Prod(C). Applying the product preserving triangulated
functor F we obtain FU(X) ∼= holim←−−−n∈N F (Xn) and in the triangle F (Xn+1)→
F (Xn) → F (Pn) → ΣF (Xn+1) we have F (Pn) ∈ Prod(F (C)). Finally it re-
mains only to note that X ∼= FU(X) since U is supposed to be fully faithful.

Recall that a quiver is a quadruple Q = (Q0, Q1, s, t) where Q0 and Q1 are
disjoint sets whose elements are called vertices, respectively arrows of Q, and
s, t : Q1 → Q0 are two maps. If for m ∈ Q1 we have i = s(m) and j = t(m) then
we call the vertices i and j the source, respectively the target of the arrow m. We
write m : i→ j to indicate this fact. Two arrows m,m′ ∈ Q1 are composable if
s(m′) = t(m). If this is the case we denote by m′m the composition and we set
s(m′m) = s(m) and t(m′m) = t(m′). We have just obtained a path of length
2. Generalizing this, a path in the quiver Q is a finite sequence of composable
maps; the number of the maps occuring in a path is called the length of the
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path. Vertices are seen as paths of length 0, or trivial paths. A relation in a
quiver is obtained as following: Consider {(γi, δi) | i ∈ I} an arbitrary set of pair
of paths such that s(γi) = s(δi) and t(γi) = t(δi) for all i ∈ I. We put γi ∼ δi,
and whenever σ and τ are paths such that the compositions make sense we have
σγi ∼ σδi and γiτ ∼ δiτ . Moreover for any path γ we set γ ∼ γ. It is easy to see
that ∼ will be an equivalence relation on the set of all paths in Q. It is clear that
every quiver may be seen as a quiver with relations, since equality is the poorest
equivalence relation. Henceforth by a quiver we will always mean a quiver with
relations. A representation X of the quiver Q in Mod(R) is an assignment to
each vertex i ∈ Q0 an R-module X(i) and to each arrow m : i → j in Q1 an
R-linear map X(m) : X(i) → X(j), such that equivalent paths lead to equal
linear maps. Morphisms of representations f : X → Y are collections of R-
linear maps f = (fi : X(i) → Y (i))i∈Q0 , with the property fjX(m) = Y (m)fi
for any arrow m : i → j in Q1. We obtain a category, namely the category of
representations of Q in Mod(R) denoted Mod(R,Q). Further, let A be the free
R-module with the basis B the set of all paths in Q modulo the equivalence
relation above, that is

A = R(B) =
⊕
b∈B

bR,

where bR = {br | r ∈ R} is a copy of R as right R-module. For two elements
b = [γ] and b′ = [γ′] in B we define the product b′b = [γ′γ] if the paths γ
and γ′ are composable, and b′b = 0 otherwise. Declaring that elements in R
commute with all elements of the base, the product extends by distributivity to
all elements in A, making A into an R-algebra, the so called path algebra of Q
over R. The trivial paths lead to a family of orthogonal idempotents e = ei ∈ A,
with i ∈ Q0. If Q0 is finite, then

∑
i∈Q0

ei is unit in A, otherwise we may add
an extra element 1 to the basis B which acts as unit, that is 1b = b1 = b
for any path b. A slightly different (but equivalent) approach of the matter
concerning quivers, may be found in [48, Chapter II,§1] (quivers are called there
diagram schemes). The categories Mod(R,Q) and Mod(A) are linked by two
functors, namely U : Mod(R,Q) → Mod(A), given by U(X) =

⊕
i∈Q0

X(i),
and F : Mod(A)→ Mod(R,Q), F (M)(i) = Mei.

Lemma 6.3.7. With the above notations the following statements hold:

a) The functor F is the right adjoint of U .

b) U is fully faithful.

c) Both F and U preserve projective objects.

Proof. a) Let X ∈ Mod(R,Q) and M ∈ Mod(A). If f :
⊕

i∈Q0
X(i)→M in an

A-linear map, then for every x ∈ X(i) we have f(x) = f(xei) = f(x)ei ∈ Mei,
showing that f = (fi : X(i)→Mei)i∈Q0

. It is not hard to see that the R-linear
maps fi have to commute with the maps induced by every i→ j in Q1, so f is
a map of representations X → F (M). Conversely if fi : X(i) → Mei)i∈I is a
map of representations, then the family of maps (X(i)→Mei →M)i∈I induce
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a unique R-linear map f :
⊕

i∈I Xi → M . Moreover if a ∈ A and x ∈
⊕

i∈I Xi

then both are written as finite sums a =
∑
b∈B bab and x =

∑
i∈I xi with ab ∈ R

and xi ∈ X(i) (almost all zero). By distributivity f(xa) = f(x)a, hence f is
A-linear. This proves the adjunction between F and U .

b) Let X be a representation of Q. We have

F (U(X)) = F

(⊕
i∈I

X(i)

)
= (X(i))i∈I = X

therefore the functor U is fully faithful.

c) First observe that for M ∈ Mod(A), we have F (M)(i) = Mei, i ∈ I, and
Mei is a direct summand of M , hence F is an exact functor. This implies that its
left adjoint U preserves projective objects. Moreover F preserves coproducts. So
for showing that F preserves projective objects it is enough to show that F (A)
is projective in Mod(R,Q). In order to prove this we will determine better
the projective objects in Mod(R,Q). View Q as a small category with object
set Q0 and maps equivalence classes of paths in Q. By [48, Chapter II, §12],
Mod(R,Q) is equivalent to the category of functors from this small category to
Mod(R), consequently according to [48, Chapter VI, Theorem 4.3], projectives
in Mod(R,Q) are exactly

Proj(R,Q) = Add({Si(P ) | i ∈ Q0 and P ∈ Proj(R)}),

where Si : Mod(R)→ Mod(R,Q) are functors defined by

Si(V ) =
⊕
i/Q0

V for all V ∈ Mod(R),

i/Q0 = {([γ], j) | j ∈ Q0 and γ : i → j is a path}, and by Add we understand
the closure under direct sums and direct summands (that is, the dual of Prod).
Now, since F (A)(i) = Aei, for all i ∈ Q0, we deduce F (A) ∈ Proj(R,Q).

Theorem 6.3.8. Let Q be a quiver and denote by Proj(R,Q) the category of
projective objects in the category Mod(R,Q). Then K(Proj(R,Q))o satisfies
Brown representability.

Proof. Consider the path algebra A of the quiver Q and the pair of adjoint func-
tors U : Mod(R, I)� Mod(A) : F defined above. By Lemma 6.3.7 we obtained
a pair of adjoint functors between Proj(R,Q) and Proj(A), which extends to a
pair of triangulated adjoint functors (denoted with the same symbols)

U : K(Proj(R,Q))� K(Proj(A)) : F .

In addition we know that the initial U is fully faithful, so the same is true for
the extended functor. By Theorem 6.3.2, K(Proj(A)) is deconstructible, hence
Proposition 6.3.6 applies.
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Example 6.3.9. If in Theorem 6.3.8 we put Q to be the following quiver

· · · → i− 1
∂i−1

→ i
∂i→ i+ 1→ · · · , (i ∈ Z),

with relations ∂i∂i−1 = 0, then a representation of this quiver is, obviously, a
complex over R. Therefore Mod(R,Q) = C(Mod(R)), and we obtain a proof
for the fact that the dual of the homotopy category of projective complexes of
R-modules satisfies Brown representability.



Appendix A

Further research

We start by recalling an important notion used in the study of triangulated
categories: A t-structure in a triangulated category in T (see [7, Definition 1.3.1])
is a pair of full subcategories

(
T ≤0, T ≥0

)
, such that the following conditions are

satisfied, where we use the notations T ≥n = Σ−nT ≥0 and T ≤n = Σ−nT ≤0:

(T1) T (X,Y ) = 0 for all X ∈ T ≤0 and all Y ∈ T ≥1.

(T2) T ≤0 ⊆ T ≤1 and T ≥1 ⊆ T ≥0

(T3) For all X ∈ T there is a triangle

X≤0 → X → X≥1 → ΣX≤0

in T , with X≤0 ∈ T ≤0 and X≥1 ∈ T ≥1.

Note that if
(
T ≤0, T ≥0

)
is a t-structure on T , then T ≤0 is called the aisle and

T ≥0 is called the coaisle, and T ≤0 ∩ T ≥0 is called the heart of this t-structure.
We know that the inclusion functor T ≤0 → T has a right adjoint and the
inclusion functor T ≥0 → T has a left adjoint and the heart is always abelian.

For my further research I plan to pursue the following directions:

A.1 Enhancements of triangulated categories

Despite the usefulness of triangulated categories, even from the beginning one
can observe that there are some reasons for which the definition of a triangu-
lated category is unsatisfactory. More precisely axioms defining a triangulated
category are not functorial. Further, performing usual constructions with tri-
angulated categories, that is taking various categories of functors landing in a
triangulated category, the result is not more triangulated. A way of overcoming
these inconvenient facts is to consider so called enhancements of triangulated
categories. I plan to include in my study various enhancements of triangulated
categories, e.g. differential graded (for short DG) categories, Quillen model

79
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categories, filtered enhancements, derivators in the sense of Grothendieck etc.
Some of them I already considered as one can see from preprints [12] and [55].

Problem A.1.1. Clarify the relationships between filtered enhancements and
derivators.

In the preprint [55] it is initiated this study by showing the following:

Theorem A.1.2. Every triangulated category which is the underlying category
of a stable derivator has a filtered enhancement.

This result gives an affirmative answer to a conjecture due to Bĕılinson.
The main reason for which filtered enhancement were defined seems to be they
allow the construction of so called realization functor. More precisely if the
triangulated category T has a filtered enhancement and we consider an arbitrary
t-structure τ in T whose heart is the (abelian) categoryA, then we can construct
a functor real : Db → T such that real◦Hi

τ = Hi, where Hi
τ are the cohomology

functors associated to τ and Hi are the canonical cohomology functors in Db.
Often the functor real is fully faithful. We intend to study how is this functor
to be defined at the level of the derivators. The paradigm for these results
should be the following:

Example A.1.3. If A is an abelian category and X 7→ D(AX) is the derivator
which associate to any small category X the derived category of the abelian cat-
egory AX , then considering the category of (finite) filtered complexes over AX
we construct as usual (that is by formally inverting filtered quasi-isomorphisms)
the filtered derived category DF(AX). We can assembly this in order to con-
struct a new derivator X 7→ DF(AX).

Problem A.1.4. Formulate and prove a version of Brown representability at
the level of various enhancements.

An approach of this problem at the level of Quillen model categories can
be found in Hovey’s paper [33]. There it is proved a homological version of
Eilenberg–Watts theorem that characterize tensor product. It would be inter-
esting to find an analogous results at the more general level of derivators.

A.2 Generalizations of tilting theory

It is well–known that if T is a small tilting R-module (where R is a ring), then T
induces equivalence of categories between D(Mod(R)) and D(Mod(E)) where
E = EndR(T ) is the endomorphism ring of T . If we drop the smallness assump-
tion, then we still can manage the situation in order to obtain an equivalence
between D(Mod(R)) and a localization of D(Mod(E)). This fact gives the pos-
sibility to define tilting objects and various generalizations of them at the level
of an abstract triangulated category. We plan to study some of these generaliza-
tions as for example silting objects. A silting object in a triangulated category



A.3. APPROXIMATIONS AND ADJOINTS 81

T was defined in [69], as being an object T ∈ T such that (T⊥>0 , T⊥<0) is a
t-structure in T and T ∈ T⊥>0 . Here we denote, for any subset I ⊆ Z:

T⊥I = {X ∈ T | T (T,ΣiX) = 0 for all i ∈ I}.

Dually it is defined a cosilting object, by requiring that (⊥>0T,⊥<0 T ) is a t-
structure in T and T ∈⊥>0 T .

Problem A.2.1. In the case of silting formulate and prove a theorem analogous
to the celebrated Tilting Theorem.

Recall that if T ∈ Mod(R) is a small tilting module of projective dimension
at most 1 and E = EndR(T ), then the Tilting Theorem of Brenner and Butler
(see [13]) says that there are torsion classes (U ,V) in Mod(R) and (X ,Y) in
Mod(E) and mutually inverse equivalences:

HomR(T,−) : U � Y : −⊗E T and ExtR(T,−) : V � X : TorE(−, T ).

The theorem was generalized for tilting objects with arbitrary finite projective
dimension (see [58]). Various other generalizations are also available. I want
to see in which form this theory generalizes for the case of a silting object
(complex). A particular case, namely for a silting complex of length 2, is studied
in the preprint [11].

Problem A.2.2. Clarify the relationship between the existence of a small (or
big) silting object T in a triangulated category T and the existence of an equiv-
alence between T and (a localization of) D(Mod(E)), where E is the DG-
endomorphism algebra of T .

Note that a particular case of this Problem, namely for T = D(Mod(R)),
where R is a ring, is studied in [12], but the same results were already obtained
in [66].

Problem A.2.3. Consider a “nice” cosilting object T ∈ T . Does T still induce
an equivalence or a duality between (a subcategory of) T and a localization of
D(G), for a suitable DG-category G?

Observe that starting with a cotilting R-module in [75] it is constructed
an abelian category G and an equivalence between D(Mod(R)) and D(G). It is
interesting to see what is happen if the cotiling module is replaced by a cosilting
complex or module. This problem is a a little more speculative, because I have
less examples. However, I just speculated that it is possible, as in the case of
passing from tilting to silting, to get analogous results, when we replace the
usual category with one enriched over complexes, that is a DG-category.

A.3 Approximations and adjoints

As we have seen Brown representability can be used for constructing adjoints,
but it is not the unique way. Another possibility is to use [63, Proposition 1.4]
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(see Corollary 2.2.5 for a particular case): If T is a triangulated category, then
the inclusion functor T ′ → T of from a triangulated subcategory T ′ to T has a
right (left) adjoint if and only if T ′ is precovering (preenveloping). In this point
the approximation theory in abelian categories, that is the theory of cotorsion
pairs, developed for example in [27], helps us to construct precovers and/or
preenvelops.

Problem A.3.1. Let (X ,Y) be a cotorsion pair in a “sufficiently nice” abelian
or exact category A. Construct (co)resolutions of complexes over A with re-
spect to this cotorsion pair. As in the case of well-known homotopically pro-
jective (injective) (co)resolutions for complexes of modules, derive the existence
of some adjoints for the inclusion functors KX−ac(A) → K(A), respectively
KY−ac(A) → K(A), where KX−ac(A) and KY−ac(A) are the homotopy cate-
gories of those complexes which become exact after application of the functor
A(X,−), respectively A(−, Y ).

This Problem generalizes the approach in [18] and a positive solution would
lead to a generalization of the equivalence between K(Proj(R)) and K(Inj(R))
for a Notherian ring R. This equivalence was first proved by Iyengar and Krause
in [34] and it is an extension of the Grothendieck duality. Our approach should
also be compared with Hovey’s method of producing model categories structures
out of cotorsion pairs (see [32]).

Problem A.3.2. Develop an ideal approximations theory in triangulated cate-
gories.

An ideal approximation theory is a theory where the usual cotorsion pair is
replaced by a pair of ideals which are orthogonal to each other with respect to
Ext-functor. Note that at the level of module (or even abelian) categories, such
a theory is already done in [23] and [24]. An abstract approach of this theory
in the triangulated case is contained in the preprint [10]. Note that various
important notions related to the triangulated structure, the most notable being
perhaps the one of Toda bracket, appears naturally in the development of this
theory. To explore these connections is a subject of a further research.
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[2] L. Alonso Tarŕıo, A. Jeremı́as López, M. J. Souto Salorio, Localization in
categories of complexes and unbounded resolutions, Canad. J. Math., 52
(2) (2000), 225–247.

[3] G. Azumaya, A. Facchini, Rings of pure global dimension zero and Mittag-
Leffler modules, J. Pure Appl. Algebra, 62(2):109–122, 1989.

[4] P. Balmer, M. Schlichting, Idempotent completion of triangulated cate-
gories, J. Algebra, 236(2), 2001, 819–834.
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[74] J. Šťov́ıček. Locally well generated homotopy categories of complexes, Doc.
Math., 15 (2010), 507–525.
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